Extension Problems Related to Fractional Operators on Metric Measure Spaces

Zhiyong Wang , Pengtao Li , Yu Liu

Frontiers of Mathematics ›› : 1 -42.

PDF
Frontiers of Mathematics ›› : 1 -42. DOI: 10.1007/s11464-023-0058-1
Research Article

Extension Problems Related to Fractional Operators on Metric Measure Spaces

Author information +
History +
PDF

Abstract

Let {Ptα}t>0 be the fractional semigroup equipped with the integral kernel {Ptα}t>0 on a complete doubling metric measure space ($\mathbb{M}$, d, μ) supporting the weak Poincaré inequality. Our aim is to characterize such a measure ν on $\mathbb{M}\times(0,\infty)$ that $f\mapsto\int_{\mathbb{M}}p_{t^{\alpha d_{w}}}^{\alpha}(\cdot,y)f(y)d\mu(y)$ is bounded from the Newton–Sobolev spaces and the Lebesgue space into the Lebesgue space $L^{q}(\mathbb{M}\times(0,\infty),\nu)$ respectively, where the kernel Ptα satisfies certain two-sided estimate obtained from the assumption on the heat kernel pt. Preliminary results including estimates, involving the variational p-capacity and the non-tangential maximal function are provided. For the extension of Lebesgue spaces, a new Lp-capacity associated to the semigroup {Ptα}t>0 is introduced. Then some basic properties of the Lp-capacity, including its dual form, the Lp-capacity of fractional parabolic balls, and capacitary strong type inequalities, are established. Meanwhile, we also obtain the space-time estimate for the semigroup {Ptα}t>0.

Keywords

Sub-Gaussian estimates / capacities / metric measure spaces / extension / fractional Laplacian

Cite this article

Download citation ▾
Zhiyong Wang, Pengtao Li, Yu Liu. Extension Problems Related to Fractional Operators on Metric Measure Spaces. Frontiers of Mathematics 1-42 DOI:10.1007/s11464-023-0058-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams D. On the existence of capacitary strong type estimates in ℝn. Ark. Mat., 1976, 14(1): 125-140.

[2]

Adams D, Hedberg L. Function Spaces and Potential Theory, 1996, Berlin: Springer-Verlag.

[3]

Adams D, Xiao J. Strong type estimates for homogeneous Besov capacities. Math. Ann., 2003, 325(4): 695-709.

[4]

Alonso-Ruiz P., Baudoin F., Chen L., Rogers L., Shanmugalingam N., Teplyaev A., Besov class via heat semigroup on Dirichlet spaces III: BV functions and sub-Gaussian heat kernel estimates. Calc. Var. Partial Differential Equations, 2021, 60 (5): Paper No. 170, 38 pp.

[5]

Barlow M, Bass R. Brownian motion and harmonic analysis on Sierpinski carpets. Canad. J. Math., 1999, 51(4): 673-744.

[6]

Barlow M, Bass R. Random walks on graphical Sierpinski carpets. Random Walks and Discrete Potential Theory (Cortona, 1997), Sympos. Math., XXXIX, 1999, Cambridge: Cambridge Univ. Press, 26-55.

[7]

Barlow M, Grigor’yan A, Kumagai T. On the equivalence of parabolic Harnack inequalities and heat kernel estimates. J. Math. Soc. Japan., 2012, 64(4): 1091-1146.

[8]

Björn A, Björn J. Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics, 17, 2011, Zürich: European Mathematical Society (EMS).

[9]

Capogna L, Garofalo N. Ahlfors type estimates for perimeter measures in Carnot–Carathéodory spaces. J. Geom. Anal., 2006, 16(3): 455-497.

[10]

Chang D, Xiao J. Lq-extensions of Lp-spaces by fractional diffusion equations. Discrete Contin. Dyn. Syst., 2015, 35(5): 1905-1920.

[11]

Cheeger J. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal., 1999, 9(3): 428-517.

[12]

Chen W. Fractional and fractal derivatives modeling of turbulence, 2005 arXiv:nlin/0511066v1

[13]

Chen Z, Kumagai T. Heat kernel estimates for stable-like processes on d-sets. Stochastic Process. Appl., 2003, 108(1): 27-67.

[14]

Coifman R, Weiss G. Analyse Harmonique Non-commutative sur Certains Espaces Homogènes—Étude de certaines intégrales singulières. Lecture Notes in Math., 242, 1971, Berlin: Springer.

[15]

Constantin P. Geometric statistics in turbulence. SIAM Rev., 1994, 36(1): 73-98.

[16]

Costea Ş. Besov capacity and Hausdorff measures in metric measure spaces. Publ. Mat., 2009, 53(1): 141-178.

[17]

Dafni G, Karadzhov G, Xiao J. Classes of Carleson-type measures generated by capacities. Math. Z., 2008, 258(4): 827-844.

[18]

Dodziuk J. Maximum principle for parabolic inequalities and the heat flow on open manifolds. Indiana Univ. Math. J., 1983, 32(5): 703-716.

[19]

Donnelly H. Positive solutions of the heat and eigenvalue equations on Riemannian manifolds. Differential Geometry (Peñíscola, 1985), 1986, Berlin: Springer, 143-151.

[20]

Donnelly H. Uniqueness of positive solutions of the heat equation. Proc. Amer. Math. Soc., 1987, 99(2): 353-356.

[21]

Franchi B, Lu G, Wheeden R. A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type. Internat. Math. Res. Notices, 1996, 1996(1): 1-14.

[22]

Fuglede B. Extremal length and functional completion. Acta Math., 1957, 98: 171-218.

[23]

Grigor’yan A. Heat Kernels and Function Theory on Metric Measure Spaces, 2003, Providence, RI: Amer. Math. Soc..

[24]

Grigor’yan A, Liu L. Heat kernel and Lipschitz–Besov spaces. Forum Math., 2015, 27(6): 3567-3613.

[25]

Heinonen J, Koskela P. Quasiconformal maps in metric spaces with controlled geometry. Acta Math., 1998, 181(1): 1-61.

[26]

Heinonen J, Koskela P, Shanmugalingam N, Tyson J. Sobolev Spaces on Metric Measure Spaces—An Approach Based on Upper Gradients. New Mathematical Monographs, 27, 2015, Cambridge: Cambridge University Press.

[27]

Herrmann R. Fractional Calculus—An Introduction for Physicists, 2014, Second Edition, Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd..

[28]

Hieber M, Pmss J. Heat kernels and maximal LpLq estimates for parabolic evolution equations. Comm. Partial Differential Equations, 1997, 22(9–10): 1647-1669.

[29]

Huang J, Li P, Liu Y, Shi S. Fractional heat semigroups on metric measure spaces with finite densities and applications to fractional dissipative equations. Nonlinear Anal., 2020, 195: 111722. 45 pp.

[30]

Jespersen S, Metzler R, Fogedby H. Levy flights in external force fields: Langevin and fractional Fokker–Planck equations and their solutions. Phys. Rev. E, 1999, 59(3): 2736-2745.

[31]

Jiang R, Xiao J, Yang Da, Zhai Z. Regularity and capacity for the fractional dissipative operator. J. Differential Equations, 2015, 259(8): 3495-3519.

[32]

Kinnunen J, Shanmugalingam N. Regularity of quasi-minimizers on metric spaces. Manuscripta Math., 2001, 105(3): 401-423.

[33]

Li P. Large time behavior of the heat equation on complete manifolds with nonnegative Ricci curvature. Ann. of Math. (2), 1986, 124(1): 1-21.

[34]

Li P, Yau S. On the parabolic kernel of the Schrüodinger operator. Acta Math., 1986, 156(3–4): 153-201.

[35]

Li P, Zhai Z. Application of capacities to space-time fractional dissipative equations II: Carleson measure characterization for Lq(ℝ+n+1, μ)-extension. Adv. Nonlinear Anal., 2022, 11(1): 850-887.

[36]

Li T, Chen Y. Initial value problems for nonlinear heat equations. J. Partial Differential Equations Ser. A, 1988, 1(1): 1-11.

[37]

Liu L., Xiao J., Yang D., Yuan W., Restriction of heat equation with Newton–Sobolev data on metric measure space. Calc. Var. Partial Differential Equations, 2019, 58 (5): Paper No. 165, 40 pp.

[38]

Lions J-L. Quelques Méthodes de Resolution des Problémes aux Limites Non Linéaires, 1969, Paris: Dunod.

[39]

Miao C. Harmonic Analysis with Application to Partial Differential Equations, 2004, Second Edition, Beijing: Science Press (in Chinese)

[40]

Miao C, Yuan B, Zhang B. Well-posedness of the Cauchy problem for the fractional power dissipative equations. Nonlinear Anal., 2008, 68(3): 461-484.

[41]

Miao C, Zhang B. The cauchy problem for semilinear parabolic equations in Besov spaces. Houston J. Math., 2004, 30(3): 829-878.

[42]

Muckenhoupt B, Wheeden R. Weighted norm inequalities for fractional integrals. Trans. Amer. Math. Soc., 1974, 192: 261-274.

[43]

Podlubny I. Fractional Differential Equations, 1999, San Diego, CA: Academic Press, Inc..

[44]

Ros-Oton X, Serra J. The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. (9), 2014, 101(3): 275-302.

[45]

Saichev A, Zaslavsky G. Fractional kinetic equations: solutions and applications. Chaos, 1997, 7(4): 753-764.

[46]

Sawyer E, Wheeden R. Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces. Amer. J. Math., 1992, 114(4): 813-874.

[47]

Shanmugalingam N. Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana, 2000, 16(2): 243-279.

[48]

Shi S, Xiao J. A tracing of the fractional temperature field. Sci. China Math., 2017, 60(11): 2303-2320.

[49]

Sogge C. Fourier Integrals in Classical Analysis, 1993, Cambridge: Cambridge University Press.

[50]

Wu Z. Strong type estimate and Carleson measures for Lipschitz spaces. Proc. Amer. Math. Soc., 1999, 127(11): 3243-3249.

[51]

Xiao J. Carleson embeddings for Sobolev spaces via heat equation. J. Differential Equations, 2006, 224(2): 277-295.

[52]

Xiao J. Homogeneous endpoint Besov space embeddings by Hausdorff capacity and heat equation. Adv. Math., 2006, 207(2): 828-846.

[53]

Zhai Z. Strichartz type estimates for fractional heat equations. J. Math. Anal. Appl., 2009, 356(2): 642-658.

[54]

Zhai Z. Carleson measure problems for parabolic Bergman spaces and homogeneous Sobolev spaces. Nonlinear Anal., 2010, 73(8): 2611-2630.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/