Sums of Higher Divisor Functions with Almost Equal Variables

Miao Lou

Frontiers of Mathematics ›› 2024, Vol. 20 ›› Issue (3) : 603 -615.

PDF
Frontiers of Mathematics ›› 2024, Vol. 20 ›› Issue (3) : 603 -615. DOI: 10.1007/s11464-023-0038-5
Research Article

Sums of Higher Divisor Functions with Almost Equal Variables

Author information +
History +
PDF

Abstract

Let k, ℓ ≥ 3 be integers, and let τk(n) denote the k-th divisor function. In this paper, we apply the circle method to obtain an asymptotic formula for the sum

|miX|Yτk(m12+m22++m2)(i=1,2,,)
with
Y=X185(k+1)+20ε
tending to infinity. Previously, only the case k = 2 was considered.

Keywords

Higher divisor functions / almost equal variables / circle method

Cite this article

Download citation ▾
Miao Lou. Sums of Higher Divisor Functions with Almost Equal Variables. Frontiers of Mathematics, 2024, 20(3): 603-615 DOI:10.1007/s11464-023-0038-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CalderónC, de VelascoMJ. On divisors of a quadratic form. Bol. Soc. Brasil. Mat. (N.S.), 2000, 31(1): 81-91

[2]

GafurovN. The sum of the number of divisors of quadratic form. Dokl. Akad. Nauk Tadzhik. SSR, 1985, 28(7): 371-375

[3]

GafurovN. On the number of divisors of a quadratic form. Proc. Steklov Inst. Math., 1993, 200(2): 137-148

[4]

GuoRT, ZhaiWG. Some problems about the ternary quadratic form m12 + m22 + m32. Acta Arith., 2012, 156(2): 101-121

[5]

HuGW, GS. Sums of higher divisor functions. J. Number Theory, 2021, 220: 61-74

[6]

HuLQ, LiuHF. Sums of divisors of a quaternary quadratic form with almost equal variables. Ramanujan J., 2016, 40(3): 557-571

[7]

HuLQ, YangL. Sums of the triple divisor function over values of a quaternary quadratic form. Acta Arith., 2018, 183(1): 63-85

[8]

HuLQ, YaoYJ. Sums of divisors of the ternary quadratic with almost equal variables. J. Number Theory, 2015, 155: 248-263

[9]

LapkovaK, ZhouNH. On the average sum of the kth divisor function over values of quadratic polynomials. Ramanujan J., 2021, 55(3): 849-872

[10]

SunQF, ZhangDY. Sums of the triple divisor function over values of a ternary quadratic form. J. Number Theory, 2016, 168: 215-246

[11]

VaughanRCThe Hardy–Littlewood Method, 1997Second EditionCambridge, Cambridge University Press

[12]

YuG. On the number of divisors of the quadratic form m2 + n2. Canad. Math. Bull., 2000, 43(2): 239-256

[13]

ZhaoLL. The sum of divisors of a quadratic form. Acta Arith., 2014, 163(2): 161-177

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

204

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/