Some Abstract Critical Point Theorems and Applications in Wave Equations

Jiayang Li , Qi Wang , Li Wu

Frontiers of Mathematics ›› : 1 -20.

PDF
Frontiers of Mathematics ›› : 1 -20. DOI: 10.1007/s11464-023-0026-9
Research Article

Some Abstract Critical Point Theorems and Applications in Wave Equations

Author information +
History +
PDF

Abstract

With the index defined in [J. Differential Equations, 2016, 260(4): 3749–3784] and [Front. Math., 2023, 18(3): 731–742], we get some critical point theorems for abstract operator equation without compactness assumption. As applications, we consider the periodic solutions of wave equations.

Keywords

Relative Morse index / periodic solutions / wave equations

Cite this article

Download citation ▾
Jiayang Li, Qi Wang, Li Wu. Some Abstract Critical Point Theorems and Applications in Wave Equations. Frontiers of Mathematics 1-20 DOI:10.1007/s11464-023-0026-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abbondandolo A. Morse Theory for Hamiltonian Systems, 2001, Boca Raton, FL: Chapman & Hall/CRC. xii+189 pp

[2]

Amann H. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev., 1976, 18(4): 620-709.

[3]

Amann H, Zehnder E. Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 1980, 7(4): 539-603.

[4]

Ambrosetti A, Rabinowitz PH. Dual variational methods in critical point theory and applications. J. Functional Analysis, 1973, 14: 349-381.

[5]

Aubin J-P, Ekeland I. Applied Nonlinear Analysis, 1984, New York: John Wiley & Sons, Inc..

[6]

Chang K. Infinite Dimensional Morse Theory and Multiple Solution Problems, 1993, Boston, MA: Birkhäuser Boston, Inc..

[7]

Chen C, Hu X. Maslov index for homoclinic orbits of Hamiltonian systems. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 2007, 24(4): 589-603.

[8]

Chen J, Zhang Z. Infinitely many periodic solutions for a semilinear wave equation in a ball in ℝn. J. Differential Equations, 2014, 256(4): 1718-1734.

[9]

Chen J, Zhang Z. Existence of infinitely many periodic solutions for the radially symmetric wave equation with resonance. J. Differential Equations, 2016, 260(7): 6017-6037.

[10]

Conley C, Zehnder E. Morse-type index theory for flows and periodic solutions for Hamiltonian equations. Comm. Pure Appl. Math., 1984, 37(2): 207-253.

[11]

Ding Y. Variational Methods for Strongly Indefinite Problems, 2007, Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd..

[12]

Ding Y. Variational methods for strongly indefinite problems. Sci. Sin. Math., 2017, 47(7): 779-810. in Chinese)

[13]

Deng W, Han W, Wang Q. The existence of periodic solution for infinite dimensional Hamiltonian systems. Comput. Math. Appl., 2020, 79(2): 354-362.

[14]

Dong D, Long Y. The iteration formula of Maslov-type index theory with applications to nonlinear Hamiltonian systems. Trans. Amer. Math. Soc., 1997, 349(7): 2619-2661.

[15]

Dong Y. Index theory for linear selfadjoint operator equations and nontrivial solutions for asymptotically linear operator equations. Calc. Var. Partial Differential Equations, 2010, 38(1–2): 75-109.

[16]

Ekeland I. Une théorie de Morse pour les systèmes hamiltoniens convexes. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1984, 1(1): 19-78.

[17]

Ekeland I. Convexity Methods in Hamiltonian Mechanics, 1990, Berlin: Springer-Verlag.

[18]

Ekeland I, Hofer H. Periodic solutions with prescribed period for convex autonomous Hamiltonian systems. Invent. Math., 1985, 81(1): 155-188.

[19]

Ekeland I, Hofer H. Convex Hamiltonian energy surfaces and their periodic trajectories. Comm. Math. Phys., 1987, 113: 419-469.

[20]

Ekeland I, Temam R. Convex Analysis and Variational Problems, 1976, Amsterdam-Oxford: North-Holland Publishing Co..

[21]

Guo Y, Liu J. Periodic solutions for an asymptotically linear wave equation with resonance. Nonlinear Anal., 2007, 67(9): 2727-2743.

[22]

Guo Y, Liu J, Zeng P. A new morse index theory for strongly indefinite functionals. Nonlinear Anal., 2004, 57(4): 485-504.

[23]

Hu X., Portaluri A., Index theory for heteroclinic orbits of Hamiltonian systems. Calc. Var. Partial Differential Equations, 2017, 56(6): Paper No. 167, 24 pp.

[24]

Ji S. Periodic solutions for one dimensional wave equation with bounded nonlinearity. J. Differential Equations, 2018, 264(9): 5527-5540.

[25]

Ji S, Li Y. Periodic solutions to one-dimensional wave equation with x-dependent coefficients. J. Differential Equations, 2006, 229(2): 466-493.

[26]

Kryszewski W, Szulkin A. An infinite dimensional Morse theory with applications. Trans. Amer. Math. Soc., 1997, 349(8): 3181-3234.

[27]

Liu C. Asymptotically linear Hamiltonian system with Lagrangian boundary conditions. Pacific J. Math., 2007, 232(1): 233-255.

[28]

Liu C. Maslov-type index theory for symplectic paths with Lagrangian boundary conditions. Adv. Nonlinear Stud., 2007, 7(1): 131-161.

[29]

Liu C, Long Y, Zhu C. Multiplicity of closed characteristics on symmetric convex hypersurfaces in ℝ2n. Math. Ann., 2002, 323(2): 201-215.

[30]

Liu C, Wang Q, Lin X. An index theory for symplectic paths associated with two Lagrangian subspaces with applications. Nonlinearity, 2011, 24(1): 43-70.

[31]

Long Y. Maslov-type index, degenerate critical points, and asymptotically linear Hamiltonian systems. Sci. China Ser. A, 1990, 33(12): 1409-1419.

[32]

Long Y. A Maslov-type index theory for symplectic paths. Topol. Methods Nonlinear Anal., 1997, 10(1): 47-78.

[33]

Long Y, Zehnder E. Morse theory for forced oscillations of asymptotically linear Hamiltonian systems. Stochastic Process, Physics and Geometry (Ascona and Locarno, 1988), 1990, Teaneck, NJ: World Sci. Publ., 528-563.

[34]

Long Y, Zhu C. Maslov-type index theory for symplectic paths and spectral flow (II). Chinese Ann. Math. Ser. B, 2000, 21(1): 89-108.

[35]

Long Y, Zhu C. Closed characteristics on compact convex hypersurfaces in ℝ2n. Ann. of Math., 2000, 155(2): 317-368.

[36]

Schechter M. Rotationally invariant periodic solutions of semilinear wave equations. Abstr. Appl. Anal., 1998, 3(1–2): 171-180.

[37]

Tanaka M. Existence of multiple weak solutions for asymptotically linear wave equations. Nonlinear Anal., 2006, 65(2): 475-499.

[38]

Wang Q, Liu C. A new index theory for linear self-adjoint operator equations and its applications. J. Differential Equations, 2016, 260(4): 3749-3784.

[39]

Wang Q, Wu L. Relative Morse index theory without compactness assumption. Front. Math., 2023, 18(3): 731-742.

[40]

Watson G. A Treatise on the Theory of Bessel Functions, 1995, Second, Cambridge: Cambridge University Press.

[41]

Zeng P, Liu J, Guo Y. Computations of critical groups and applications to asymptotically linear wave equation and beam equation. J. Math. Anal. Appl., 2004, 300(1): 102-128.

[42]

Zhu C, Long Y. Maslov-type index theory for symplectic paths and spectral flow (I). Chinese Ann. Math. Ser. B, 1999, 20(4): 413-424.

AI Summary AI Mindmap
PDF

93

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/