PDF
Abstract
Let c1, …, cs be non-zero integers satisfying c1 + ⋯ + cs = 0. We consider the system $c_{1}x_{1}^{d}+\cdots+c_{s}x_{s}^{d}=0$ with d ≥ 3, where xi are restricted in subset $\cal{A}$ of Piatetski-Shapiro primes not exceeding x and corresponding to c. We show that for s > S(d)+2 and $c\in(1,1+\tilde{c}(d,s))$, if the system has only K-trivial solutions in $\cal{A}$, then $\vert\cal{A}\vert\ll{x^{1/c}\over{\log x}}(\log\log\log\log x)^{{2-s\over{dc}}+\varepsilon}$, where S(3) = 8, S(4) = 16, S(d) = d(d + 1) (d ≥ 5), and $\tilde{c}(d,s)=\min\{{2d\over{(S(d)+1)(3d-4)(3d-2)(3d+2)-d)-d}},{{d\over{S(d)s-d}}}\}$.
Keywords
Piatetski-Shapiro prime
/
Roth theorem
/
transference principle
Cite this article
Download citation ▾
Qingqing Zhang, Rui Zhang.
Roth-type Theorem for High-power System in Piatetski-Shapiro primes.
Frontiers of Mathematics 1-20 DOI:10.1007/s11464-023-0024-y
| [1] |
Akbal Y, Güloǧlu AM. Piatetski-Shapiro meets Chebotarev. Acta Arith., 2015, 167(4): 301-325.
|
| [2] |
Akbal Y, Güloǧlu AM. Waring’s problem with Piatetski-Shapiro numbers. Mathematika, 2016, 62(2): 524-550.
|
| [3] |
Akbal Y, Güloǧlu AM. Waring–Goldbach problem with Piatetski-Shapiro primes. J. Theor. Nombres Bordeaux, 2018, 30(2): 449-467.
|
| [4] |
Bloom TF, Sisask O. Breaking the logarithmic barrier in Roth’s theorem on arithmetic progressions, 2020 arXiv:2007.03528
|
| [5] |
Bourgain J. On Λ(p)-subsets of squares. Israel J. Math., 1989, 67(3): 291-311.
|
| [6] |
Bourgain J, Demeter C, Guth L. Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three. Ann. of Math. (2), 2016, 184(2): 633-682.
|
| [7] |
Browning TD, Prendiville SM. A transference approach to a Roth-type theorem in the squares. Int. Math. Res. Not. IMRN, 2017, 2017(7): 2219-2248.
|
| [8] |
Chow S. Roth–Waring–Goldbach. Int. Math. Res. Not. IMRN, 2018, 2018(8): 2341-2374.
|
| [9] |
Green B. Roth’s theorem in the primes. Ann. of Math. (2), 2005, 161(3): 1609-1636.
|
| [10] |
Heath-Brown DR. The Pjateckiĭ-Šapiro prime number theorem. J. Number Theory, 1983, 16(2): 242-266.
|
| [11] |
Kolesnik G. Primes of the form [nc]. Pacific J. Math., 1985, 118(2): 437-447.
|
| [12] |
Mirek M. Roth’s theorem in the Piatetski-Shapiro primes. Rev. Mat. Iberoam., 2015, 31(2): 617-656.
|
| [13] |
Piatetski-Shapiro II. On the distribution of prime numbers in sequences of the form [f (n)]. Mat. Sbornik N.S., 1953, 33(75): 559-566.
|
| [14] |
Ren XM, Zhang QQ, Zhang R. Roth-type theorem for quadratic system in Piatetski-Shapiro primes. J. Number Theory, 2024, 257: 1-23.
|
| [15] |
Rivat J, Sargos P. Nombres premiers de la forme ⌊ nc⌊. Canad. J. Math., 2001, 53(2): 414-433.
|
| [16] |
Roth KF. On certain sets of integers. J. London Math. Soc., 1953, 28: 104-109.
|
| [17] |
Roth KF. On certain sets of integers, II. J. London Math. Soc., 1954, 29: 20-26.
|
| [18] |
Sun YC, Du SS, Pan H. Vinogradov three prime theorem with Piatetski-Shapiro primes, 2023 arXiv:1912.12572v3
|
| [19] |
Vaughan RC. On Waring’s problem for smaller exponents, II. Mathematika, 1986, 33(1): 6-22.
|
| [20] |
Vaughan RC. On Waring’s problem for cubes. J. Reine Angew. Math., 1986, 365: 122-170.
|