The Rational Cohomology Groups of the Classifying Spaces of Kac–Moody Groups

Xu’an Zhao , Hongzhu Gao , Yangyang Ruan

Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (4) : 873 -892.

PDF
Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (4) : 873 -892. DOI: 10.1007/s11464-023-0023-z
Research Article

The Rational Cohomology Groups of the Classifying Spaces of Kac–Moody Groups

Author information +
History +
PDF

Abstract

In this paper, we compute the rational cohomology groups of the classifying space of a simply connected Kac–Moody group of infinite type. The fundamental principle is “from finite to infinite”. That is, for a Kac–Moody group G(A) of infinite type, the input data for computation are the rational cohomology of classifying spaces of parabolic subgroups of G(A)(which are of finite type), and the homomorphisms induced by inclusions of these subgroups. In some special cases, we can further determine the cohomology rings. Our method also applies to study the mod p cohomology of the classifying spaces of Kac–Moody groups.

Keywords

Kac–Moody group / classifying space / cohomology group / infinite type

Cite this article

Download citation ▾
Xu’an Zhao, Hongzhu Gao, Yangyang Ruan. The Rational Cohomology Groups of the Classifying Spaces of Kac–Moody Groups. Frontiers of Mathematics, 2025, 20(4): 873-892 DOI:10.1007/s11464-023-0023-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AguadéJ, BrotoC, KitchlooN, SaumellL. Cohomology of classifying spaces of central quotients of rank two Kac–Moody groups. J. Math. Kyoto Univ., 2005, 45(3): 449-488

[2]

BorelA Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. of Math. (2), 1953, 57: 115-207

[3]

BottR, TuLW Differential Forms in Algebraic Topology, 1982 New York Springer-Verlag 82

[4]

BousfieldAK, KanDM Homotopy Limits, Completions and Localizations, 1972 Berlin Springer-Verlag 304

[5]

BrotoC, KitchlooN. Classifying spaces of Kac–Moody groups. Math. Z., 2002, 240(3): 621-649

[6]

DuggerD A primer on homotopy colimits, 2008

[7]

FoleyJD. Recognizing nullhomotopic maps into the classifying space of a Kac–Moody group. Math. Z., 2022, 301(3): 2465-2496

[8]

JackowskiS, McClureJ, OliverB. Homotopy classification of self-maps of BG via G-actions, II. Ann. of Math. (2), 1992, 135(1): 183-226

[9]

KacVG. Simple irreducible graded Lie algebras of finite growth. Izv. Akad. Nauk SSSR Ser. Mat., 1968, 32: 1323-1367 (in Russian)

[10]

KacVG. Constructing groups associated to infinite-dimensional Lie algebras. Infinite-dimensional Groups with Applications, 1985 New York Springer 167-216 4

[11]

KacVG Infinite Dimensional Lie Algebras, 1990 Third Cambridge Cambridge University Press

[12]

KacVG, PetersonDH. Regular functions on certain infinite-dimensional groups. Arithmetic and Geometry, Vol. II, 1983 Boston, MA Birkhäuser Boston, Inc. 141-166 36

[13]

Kac V.G., Peterson D.H., Defining relations of certain infinite-dimensional groups. In: The Mathematical Heritage of Élie Cartan, Numéro Hors Série: Astérisque, 1985, 165–208

[14]

KitchlooNR Topology of Kac–Moody groups, 1998 Ann Arbor, MI Massachusetts Institute of Technology

[15]

KitchlooNR. On some applications of unstable Adams operations to the topology of Kac–Moody groups. Proc. Amer. Math. Soc., 2017, 145(2): 915-924

[16]

MoodyRV. A new class of Lie algebras. J. Algebra, 1968, 10: 211-230

[17]

RuanYY, ZhaoXA Cohomology of classifying spaces of rank 3 Kac–Moody groups, 2025 arXiv:2502.06169v1

[18]

ZhaoXA, GaoHZ. The rational cohomology Hopf algebra of a generic Kac–Moody group. Pacific J. Math., 2020, 305(2): 757-766

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/