Fixed Points of Involutions of G-Higgs Bundle Moduli Spaces over a Compact Riemann Surface with Classical Complex Structure Group

Álvaro Antón-Sancho

Frontiers of Mathematics ›› : 1 -15.

PDF
Frontiers of Mathematics ›› : 1 -15. DOI: 10.1007/s11464-023-0014-0
Research Article

Fixed Points of Involutions of G-Higgs Bundle Moduli Spaces over a Compact Riemann Surface with Classical Complex Structure Group

Author information +
History +
PDF

Abstract

Let X be a compact and connected Riemann surface of genus g ≥ 2. In this paper, moduli spaces of Higgs bundles over X with structure group SL(n, ℂ), for n ≥ 3, and Spin(2n, ℂ), for n ≥ 4, are considered. In the case of structure group SL(n, ℂ), two involutions of the Higgs bundle moduli space are defined and an alternative proof is given to show, using specific properties of the structure group, that the stable fixed points can be described as certain Higgs pairs with structure group SO(n, ℂ) or Sp(n, ℂ). Moreover, the notions of stability, semistability, and polystability of the obtained Higgs pairs are established. Also, two involutions of the moduli space of Higgs bundles with structure group Spin(2n, ℂ) are defined for n ≥ 4 analogously and it is shown, also using specific properties of the group, that their stable fixed points can be described as certain Higgs pairs whose structure group is of the form Spin(2r + 1, ℂ) × Spin(2n − 2r − 1, ℂ) for some 0 ≤ rn − 1.

Keywords

Higgs bundle / Higgs pair / spin / automorphism / involution / fixed point

Cite this article

Download citation ▾
Álvaro Antón-Sancho. Fixed Points of Involutions of G-Higgs Bundle Moduli Spaces over a Compact Riemann Surface with Classical Complex Structure Group. Frontiers of Mathematics 1-15 DOI:10.1007/s11464-023-0014-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson LB, Hausel T, Mazzeo R, Schaposnik LP. Geometry and physics of Higgs bundles. Oberwolfach Rep., 2019, 16(2): 1357-1417.

[2]

Antón-Sancho A. Principal spin-bundles and triality. Rev. Colombiana Mat., 2015, 49(2): 235-259.

[3]

Antón-Sancho A. Automorphisms of order three of the moduli space of Spin-Higgs bundles. Hokkaido Math. J., 2018, 47(2): 387-426.

[4]

Antón-Sancho A. Automorphisms of the moduli space of principal G-bundles induced by outer automorphisms of G. Math. Scand., 2018, 122(1): 53-83.

[5]

Antón-Sancho A. Shatz and Bialynicki-Birula stratifications of the moduli space of Higgs bundles. Hokkaido Math. J., 2022, 51(1): 25-56.

[6]

Antón-Sancho A. F4 and PSp(8, ℂ)-Higgs pairs understood as fixed points of the moduli space of E6-Higgs bundles over a compact Riemann surface. Open Math., 2022, 20(1): 1723-1733.

[7]

Antón-Sancho A., Spin(8,C)-Higgs pairs over a compact Riemann surface. Open Math., 2023, 21(1): Paper No. 20230153, 18 pp.

[8]

Baraglia D. Classification of the automorphism and isometry groups of Higgs bundle moduli spaces. Proc. Lond. Math. Soc. (3), 2016, 112(5): 827-854.

[9]

Bradlow SB, García-Prada O, Gothen PB. Homotopy groups of moduli spaces of representations. Topology, 2008, 47(4): 203-224.

[10]

Fulton W, Harris J. Representation Theory, 1991, New York: Springer-Verlag.

[11]

García-Prada O., Gothen P.B., Mundet I., The Hitchin-Kobayashi correspondence, Higgs pairs and surface group representations. 2012, arXiv:0909.4487v3

[12]

García-Prada O, Ramanan S. Involutions and higher order automorphisms of Higgs bundle moduli spaces. Proc. Lond. Math. Soc. (3), 2019, 119(3): 681-732.

[13]

Gothen PB, Zúñiga-Rojas RA. Stratifications on the moduli space of Higgs bundles. Port. Math., 2017, 74(2): 127-148.

[14]

Hausel T. Geometry of Higgs bundles, 1998, Cambridge: University of Cambridge.

[15]

Hitchin N. The self-duality equations on a Riemann surface. Proc. London Math. Soc. (3), 1987, 55(1): 59-126.

[16]

Nitsure N. Moduli space of semistable pairs on a curve. Proc. London Math. Soc. (3), 1991, 62(2): 275-300.

[17]

Simpson CT. Higgs bundles and local systems. Inst. Hautes Etudes Sci. Publ. Math., 1992, 75: 5-95.

[18]

Varadarajan VS. Supersymmetry for Mathematicians—An Introduction, 2004, Providence, RI: American Mathematical Society.

[19]

Wolf JA, Gray A. Homogeneous spaces defined by Lie groups automorphisms. I. J. Differential Geometry, 1968, 2: 77-114.

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/