Cohomology and Crossed Module Extensions of Hom-Leibniz–Rinehart Algebras

Yanhui Bi , Danlu Chen , Tao Zhang

Frontiers of Mathematics ›› : 1 -28.

PDF
Frontiers of Mathematics ›› : 1 -28. DOI: 10.1007/s11464-022-0351-4
Research Article

Cohomology and Crossed Module Extensions of Hom-Leibniz–Rinehart Algebras

Author information +
History +
PDF

Abstract

In this paper, we introduce the concept of crossed module for Hom-Leibniz–Rinehart algebras. We then study the cohomology and extension theory of Hom-Leibniz–Rinehart algebras. It is proved that there is a one-to-one correspondence between equivalence classes of abelian extensions of Hom-Leibniz–Rinehart algebras and the elements of second cohomology group. Furthermore, we prove that there is a natural map from α-crossed module extensions of Hom-Leibniz–Rinehart algebras to the third cohomology group of Hom-Leibniz–Rinehart algebras.

Keywords

Hom-Leibniz–Rinehart algebras / crossed modules / cohomology

Cite this article

Download citation ▾
Yanhui Bi, Danlu Chen, Tao Zhang. Cohomology and Crossed Module Extensions of Hom-Leibniz–Rinehart Algebras. Frontiers of Mathematics 1-28 DOI:10.1007/s11464-022-0351-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albeverio SA, Ayupov SA, Omirov BA. Cartan subalgebras, weight spaces, and criterion of solvability of finite-dimensional Leibniz algebras. Rev. Mat. Complut., 2006, 19(1): 183-195.

[2]

Alp M. Pullback crossed modules of algebroids. Iran. J. Sci. Technol. Trans. A Sci., 2008, 32(1): 1-5.

[3]

Alp M. Pushout crossed modules of algebroids. Iran. J. Sci. Technol. Trans. A Sci., 2008, 32(3): 175-181.

[4]

Alp M. Cat1-Lie–Rinehart algebras, 2014, Athens: WSEAS Press, 70-73.

[5]

Barnes DW. On Levi’s theorem for Leibniz algebras. Bull. Aust. Math. Soc., 2012, 86(2): 184-185.

[6]

Blokh AM. On a generalization of the concept of a Lie algebra. Dokl. Akad. Nauk SSSR, 1965, 165: 471-473.

[7]

Casas JM, Çetin S, Uslu E. Crossed modules in the category of Loday QD-Rinehart algebras. Homology Homotopy Appl., 2020, 22(2): 347-366.

[8]

Casas JM, Khmaladze E, Pacheco N. A non-abelian tensor product of Hom-Lie algebras. Bull. Malays. Math. Sci. Soc., 2017, 40(3): 1035-1054.

[9]

Casas JM, Ladra M, Omirov BA, Karimjanov IA. Classification of solvable Leibniz algebras with null-filiform nilradical. Linear Multilinear Algebra, 2013, 61(6): 758-774.

[10]

Casas JM, Ladra M, Pirashvili T. Crossed modules for Lie–Rinehart algebras. J. Algebra, 2004, 274(1): 192-201.

[11]

Cuvier C. Algèbres de Leibnitz: définitions, propriétés. Ann. Sci. Écol. Norm. Sup. (4), 1994, 27(1): 1-45.

[12]

Gao Y. Leibniz homology of unitary Lie algebras. J. Pure Appl. Algebra, 1999, 140(1): 33-56.

[13]

Gao Y. The second Leibniz homology group for Kac–Moody Lie algebras. Bull. London Math. Soc., 2000, 32(1): 25-33.

[14]

Guo S, Zhang X, Wang S. On split regular Hom-Leibniz–Rinehart algebras. J. Math. Res. Appl., 2022, 42(5): 481-498.

[15]

Hartwig J, Larsson D, Silvestrov S. Deformations of Lie algebras using σ-derivations. J. Algebra, 2006, 295(2): 314-361.

[16]

Herz JC. Pseudo-algèbres de Lie. I. C. R. Acad. Sci. Paris, 1953, 236: 1935-1937.

[17]

Huebschmann J. Poisson cohomology and quantization. J. Reine Angew. Math., 1990, 408: 57-113.

[18]

Huebschmann J. Duality for Lie–Rinehart algebras and the modular class. J. Reine Angew. Math., 1999, 510: 103-159.

[19]

Laurent-Gengoux C, Teles J. Hom-Lie algebroids. J. Geom. Phys., 2013, 68: 69-75.

[20]

Liu D, Lin L. On the toroidal Leibniz algebras. Acta Math. Sin. (Engl. Ser.), 2008, 24(2): 227-240.

[21]

Loday J-L. Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign. Math. (2), 1993, 39(3–4): 269-293.

[22]

Loday J-L, Pirashvili T. Universal enveloping algebra of Leibniz algebras and (co)homology. Math. Ann., 1993, 296(1): 139-158.

[23]

Mackenzie K. Lie Groupoids and Lie Algebroids in Differential Geometry, 1987, Cambridge: Cambridge University Press. 124

[24]

Makhlouf A, Silvestrov S. Hom-algebra structures. J. Gen. Lie Theory Appl., 2008, 2(2): 51-64.

[25]

Makhlouf A, Silvestrov S. Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras. Forum Math., 2010, 22(4): 715-739.

[26]

Mandal A, Kumar Mishra S. Hom-Lie–Rinehart algebras. Comm. Algebra, 2018, 46(9): 3722-3744.

[27]

Omirov BA. Conjugacy of Cartan subalgebras of complex finite-dimensional Leibniz algebras. J. Algebra, 2006, 302(2): 887-896.

[28]

Palais RS. The cohomology of Lie rings. Proc. Sympos. Pure Math., Providence, RI: Amer. Math. Soc., 1961, 3: 130-137.

[29]

Rinehart GS. Differential forms on general commutative algebras. Trans. Amer. Math. Soc., 1963, 108: 195-222.

[30]

Sheng Y. Representations of Hom-Lie algebras. Algebr. Represent. Theory, 2012, 15(6): 1081-1098.

[31]

Wang Q, Tan S. Leibniz central extension on a Block Lie algebra. Algebra Colloq., 2007, 14(4): 713-720.

[32]

Yau D. Enveloping algebras of Hom-Lie algebras. J. Gen. Lie Theory Appl., 2008, 2(2): 95-108.

[33]

Zhang T, Han FY, Bi YH. Crossed modules for Hom-Lie-Rinehart algebras. Colloq. Math., 2018, 152(1): 1-14.

[34]

Zhang T., Zhang H.Y., Crossed modules for Hom-Lie antialgebras. J. Algebra Appl., 2022, 21(7): Paper No. 2250135, 23 pp.

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/