Weak Quenched Invariance Principle for Random Walk with Random Environment in Time

You Lü , Wenming Hong

Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (5) : 1109 -1123.

PDF
Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (5) : 1109 -1123. DOI: 10.1007/s11464-022-0348-z
Research Article
research-article

Weak Quenched Invariance Principle for Random Walk with Random Environment in Time

Author information +
History +
PDF

Abstract

Consider the invariance principle for a random walk with a random environment (denoted by μ) in time on ℝ in a weak quenched sense. We show that a sequence of random probability measures on ℝ generated by μ and a bounded Lipschitz functional f will converge in distribution to another random probability measure, which can be represented by f and two independent Brownian motions. The upper bound of the convergence rate has been obtained. We also explain that in general, this convergence can not be strengthened to the almost surely sense.

Keywords

Random environment / invariance principle / weak quenched limits / 60G50

Cite this article

Download citation ▾
You Lü, Wenming Hong. Weak Quenched Invariance Principle for Random Walk with Random Environment in Time. Frontiers of Mathematics, 2025, 20(5): 1109-1123 DOI:10.1007/s11464-022-0348-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AfanasyevVI. About time of reaching a high level by a random walk in a random environment. Theory Probab. Appl., 2013, 57(4): 547-567.

[2]

AïdékonE, JaffuelB. Survival of branching random walks with absorption. Stochastic Process. Appl., 2011, 121(9): 1901-1937.

[3]

AliliS. Asymptotic behaviour for random walks in random environments. J. Appl. Probab., 1999, 36(2): 334-349.

[4]

BergerN, BiskupM. Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Related Fields, 2007, 137(1–2): 83-120.

[5]

BerkesI, LiuW, WuW. Komlós–Major–Tusnády approximation under dependence. Ann. Probab., 2014, 42(2): 794-817.

[6]

BiskupM, PrescottTM. Functional CLT for random walk among bounded random conductances. Electron. J. Probab., 2007, 12: 1323-1348. Paper No. 49

[7]

CsörgőM, RévészP. How big are the increments of a Wiener process?. Ann. Probab., 1979, 7(4): 731-737.

[8]

CunyC, DedeckerJ, MerlevédeF. On the Komlós, Major and Tusnády strong approximation for some classes of random iterates. Stochastic Process. Appl., 2018, 128(4): 1347-1385.

[9]

Donsker M.D., An invariance principle for certain probability limit theorems. Mem. Amer. Math. Soc., 1951, 6: 12 pp.

[10]

DurrettRProbability—Theory and Examples, 2019Fifth EditionCambridge. Cambridge University Press. . 49

[11]

GantertN, HuY, ShiZ. Asymptotics for the survival probability in a killed branching random walk. Ann. Inst. Henri Poincaré Probab. Stat., 2011, 47(1): 111-129.

[12]

GoldsheidIY. Simple transient random walks in one-dimensional random environment: the central limit theorem. Probab. Theory Related Fields, 2007, 139(1–2): 41-64.

[13]

HuY, ShiZ. Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann. Probab., 2009, 37(2): 742-789.

[14]

KubotaN. Quenched invariance principle for simple random walk on discrete point processes. Stochastic Process. Appl., 2013, 123(10): 3737-3752.

[15]

Y, HongW. Quenched small deviation for the trajectory of a random walk with random environment in time. Theory Probab. Appl., 2023, 68(2): 267-284.

[16]

Y, HongW. On the barrier problem of branching random walk in time-inhomogeneous random environment. ALEA Lat. Am. J. Probab. Math. Stat., 2024, 21(1): 39-71.

[17]

Mallein B., Maximal displacement in a branching random walk through interfaces. Electron. J. Probab., 2015, 20: Paper No. 68, 40 pp.

[18]

MalleinB, MiłośP. Brownian motion and random walks above quenched random wall. Ann. Inst. Henri Poincaré Probab. Stat., 2018, 54(4): 1877-1916.

[19]

MalleinB, MiłośP. Maximal displacement of a supercritical branching random walk in a time-inhomogeneous random environment. Stochastic Process. Appl., 2019, 129(9): 3239-3260.

[20]

Mogul’skiĭAA. Small deviations in the space of trajectories. Teor. Verojatnost. i Primenen., 1974, 19: 755-765

[21]

Rassoul-AghaF, SeppäläinenT. Almost sure functional central limit theorem for ballistic random walk in random environment. Ann. Inst. Henri Poincaré Probab. Stat., 2009, 45(2): 373-420.

[22]

SakhanenkoAI. Estimates in the invariance principle in terms of truncated power moments. Siberian Math. J., 2006, 47(6): 1113-1127.

[23]

SidoraviciusV, SznitmanA-S. Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Related Fields, 2004, 129(2): 219-244.

[24]

SznitmanA-S, ZeitouniO. An invariance principle for isotropic diffusions in random environment. Invent. Math., 2006, 164(3): 455-567.

[25]

ZaitsevAYu. Multidimensional version of a result of Sakhanenko in the invariance principle for vectors with finite exponential moments. I. Theory Probab. Appl., 2002, 45(4): 624-641.

[26]

ZaitsevAYu. Estimates for the rate of strong Gaussian approximation for sums of i.i.d. multidimensional random vectors. J. Math. Sci., 2008, 152(6): 875-884.

[27]

ZeitouniORandom walks in random environment, 2004, Berlin. Springer. 1893121837

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

45

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/