The Cohomology of P(2) in Dimensions Less Than 4 at an Odd Prime

Zhilei Zhang , Xiangjun Wang , Linan Zhong

Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (4) : 893 -904.

PDF
Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (4) : 893 -904. DOI: 10.1007/s11464-022-0340-7
Research Article

The Cohomology of P(2) in Dimensions Less Than 4 at an Odd Prime

Author information +
History +
PDF

Abstract

Let

P ( 2 ) = P / ( ξ 1 p 2 , ξ 2 p 2 , ξ 3 p 2 , )
, where
P = F p [ ξ 1 , ξ 2 , ξ 3 , ]
is the polynomial part of the dual Steenrod algebra and p is an odd prime. In this paper we calculate the cohomology of P(2) in dimensions less than 4 by a May spectral sequence.

Keywords

Chromatic spectral sequence / May spectral sequence / Steenrod algebra / cohomology

Cite this article

Download citation ▾
Zhilei Zhang, Xiangjun Wang, Linan Zhong. The Cohomology of P(2) in Dimensions Less Than 4 at an Odd Prime. Frontiers of Mathematics, 2025, 20(4): 893-904 DOI:10.1007/s11464-022-0340-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AndrewsMJ The v 1-periodic part of the Adams spectral sequence at an odd prime, 2015 Cambridge, MA Massachusetts Institute of Technology

[2]

LiuXG, WangXJ. A four-filtrated May spectral sequence and its applications. Acta Math. Sin. (Engl. Ser.), 2008, 24(9): 1507-1524

[3]

MillerH. A localization theorem in homological algebra. Math. Proc. Cambridge Philos. Soc., 1978, 84(1): 73-84

[4]

MillerH, RavenelDC, WilsonS. Periodic phenomena in the Adams–Novikov spectral sequence. Ann. of Math. (2), 1977, 106(3): 469-516

[5]

MilnorJ. The Steenrod algebra and its dual. Ann. of Math. (2), 1958, 67: 150-171

[6]

RavenelDC. The cohomology of the Morava stabilizer algebras. Math. Z., 1977, 152(3): 287-297

[7]

RavenelDC. Complex Cobordism and Stable Homotopy Groups of Spheres. Pure and Applied Mathematics, 121, 1986 Orlando, FL Academic Press, Inc.

[8]

ShimomuraK, WangXJ. The Adams–Novikov E2-term for π*(L2 S0)-term at the prime 2. Math. Z., 2002, 241(2): 271-311

[9]

ShimomuraK, WangXJ. The homotopy groups π*(L 2 S0) at the prime 3. Topology, 2002, 41(6): 1183-1198

[10]

ShimomuraK, YabeA. The homotopy groups π*(L 2 S0). Topology, 1995, 34(2): 261-289

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/