PDF
Abstract
We consider the asymmetric zero range process in dimensions d ≥ 2. Assume the initial density profile is a perturbation of the constant density, which has order N−α, α ∈ (0, 1), and is constant along the drift direction. Here, N is the scaling parameter. We show that under some constraints on the jump rate of the zero range process, the perturbed quantity macroscopically obeys the heat equation under diffusive scaling.
Keywords
Asymmetric zero range process
/
diffusive scaling
/
spectral gap estimate
/
logarithmic Sobolev inequality
Cite this article
Download citation ▾
Linjie Zhao.
Equilibrium Perturbations for the Asymmetric Zero Range Process Under Diffusive Scaling in Dimensions d ≥ 2.
Frontiers of Mathematics 1-26 DOI:10.1007/s11464-022-0337-2
| [1] |
Andjel ED. Invariant measures for the zero range processes. Ann. Probab., 1982, 10(3): 525-547.
|
| [2] |
Benois O, Esposito R, Marra R, Mourragui M. Hydrodynamics of a driven lattice gas with open boundaries: the asymmetric simple exclusion. Markov Process. Related Fields, 2004, 10(1): 89-112.
|
| [3] |
Benois O, Koukkous A, Landim C. Diffusive behavior of asymmetric zero-range processes. J. Statist. Phys., 1997, 87(3–4): 577-591.
|
| [4] |
Dai Pra P, Posta G. Logarithmic sobolev inequality for zero-range dynamics. Ann. Probab., 2005, 33(6): 2355-2401.
|
| [5] |
Esposito R, Marra R, Yau HT. Diffusive Limit of Asymmetric Simple Exclusion. Adv. Ser. Math. Phys. 20, 1994, River Edge, NJ: World Sci. Publ..
|
| [6] |
Fritz J, Tóth B. Derivation of the leroux system as the hydrodynamic limit of a two-component lattice gas. Comm. Math. Phys., 2004, 249(1): 1-27.
|
| [7] |
Jara M, Landim C, Tsunoda K. Derivation of viscous burgers equations from weakly asymmetric exclusion processes. Ann. Inst. Henri Poincaré Probab. Stat., 2021, 57(1): 169-194.
|
| [8] |
Kipnis C, Landim C. Scaling Limits of Interacting Particle Systems, 1999, Berlin: Springer-Verlag.
|
| [9] |
Landim C, Sethuraman S, Varadhan SRS. Spectral gap for zero-range dynamics. Ann. Probab., 1996, 24(4): 1871-1902.
|
| [10] |
Landim C, Sued M, Valle G. Hydrodynamic limit of asymmetric exclusion processes under diffusive scaling in d ≥ 3. Comm. Math. Phys., 2004, 249(2): 215-247.
|
| [11] |
Morris B. Spectral gap for the zero range process with constant rate. Ann. Probab., 2006, 34(5): 1645-1664.
|
| [12] |
Nagahata Y. Spectral gap for zero-range processes with jump rate g(x) = xγ. Stochastic Process. Appl., 2010, 120(6): 949-958.
|
| [13] |
Rezakhanlou F. Hydrodynamic limit for attractive particle systems on ℤd. Comm. Math. Phys., 1991, 140(3): 417-448.
|
| [14] |
Seppäläinen T. Perturbation of the equilibrium for a totally asymmetric stick process in one dimension. Ann. Probab., 2001, 29(1): 176-204.
|
| [15] |
Tóth B, Valkó B. Between equilibrium fluctuations and Eulerian scaling: perturbation of equilibrium for a class of deposition models. J. Statist. Phys., 2002, 109(1–2): 177-205.
|
| [16] |
Tóth B, Valkó B. Perturbation of singular equilibria of hyperbolic two-component systems: a universal hydrodynamic limit. Comm. Math. Phys., 2005, 256(1): 111-157.
|
| [17] |
Valkó B. Hydrodynamic limit for perturbation of a hyperbolic equilibrium point in two-component systems. Ann. Inst. H. Poincaré Probab. Statist., 2006, 42(1): 61-80.
|
| [18] |
Xu L., Zhao L., Equilibrium perturbations for stochastic interacting systems. Electron. J. Probab., 2023, 28: Paper No. 6, 30 pp.
|
| [19] |
Yau HT. Relative entropy and hydrodynamics of Ginzburg–Landau models. Lett. Math. Phys., 1991, 22(1): 63-80.
|