PDF
Abstract
In this paper, we consider the existence and asymptotic behavior normalized solutions for the following Choquard equation involving Sobolev critical exponent
under the prescribed
L2-norm
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\int_{\mathbb R^{3}} \ u^{2}=c^{2}$$\end{document}
with
c > 0, where
Iα denotes the Riesz potential. Let
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${5 \over 3} < q < 3$$\end{document}
. When
α > 0 small enough, we obtain the existence of the positive ground state solutions, which converge to a least energy solution of the limiting critical local problem as
α → 0
+.
Keywords
Choquard problem
/
critical exponent
/
normalized solutions
/
asymptotic behavior
Cite this article
Download citation ▾
Xiaojing Feng, Yuhua Li.
Normalized Solutions of the Choquard Equation with Sobolev Critical Exponent.
Frontiers of Mathematics, 2025, 20(3): 581-601 DOI:10.1007/s11464-022-0292-y
| [1] |
Bartsch T., Liu Y., Liu Z., Normalized solutions for a class of nonlinear Choquard equations. Partial Differ. Equ. Appl., 2020, 1 (5): Paper No. 34, 25 pp.
|
| [2] |
Bartsch T., Soave N., Multiple normalized solutions for a competing system of Schrödinger equations. Calc. Var. Partial Differential Equations, 2019, 58 (1): Paper No. 22, 24 pp.
|
| [3] |
FengB, YuanX. On the Cauchy problem for the Schrödinger–Hartree equation. Evol. Equ. Control Theory, 2015, 4(4): 431-445
|
| [4] |
GhoussoubNDuality and Perturbation Methods in Critical Point Theory, 1993, Cambridge, Cambridge University Press 107
|
| [5] |
JeanjeanL. Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal., 1997, 28(10): 1633-1659
|
| [6] |
Li F., Li Y., Shi J., Existence of positive solutions to Schrödinger–Poisson type systems with critical exponent. Commun. Contemp. Math., 2014, 16 (6): Paper No. 1450036, 28 pp.
|
| [7] |
Li G., Ye H., The existence of positive solutions with prescribed L2-norm for nonlinear Choquard equations. J. Math. Phys., 2014, 55 (12): Paper No. 121501, 19 pp.
|
| [8] |
Li X., Ma S., Choquard equations with critical nonlinearities. Commun. Contemp. Math., 2020, 22 (4): Paper No. 1950023, 28 pp.
|
| [9] |
LiebEH, LossMAnalysis, 2001SecondProvidence, RI, American Mathematical Society14
|
| [10] |
RuizD, Van SchaftingenJ. Odd symmetry of least energy nodal solutions for the Choquard equation. J. Differential Equations, 2018, 264(2): 1231-1262
|
| [11] |
SeokJ. Nonlinear Choquard equations involving a critical local term. Appl. Math. Lett., 2017, 63: 77-87
|
| [12] |
SeokJ. Limit profiles and uniqueness of ground states to the nonlinear Choquard equations. Adv. Nonlinear Anal., 2019, 8(1): 1083-1098
|
| [13] |
Soave N., Normalized ground states for the NLS equation with combined nonlinearities: The Sobolev critical case. J. Funct. Anal., 2020, 279 (6): Paper No. 108610, 43 pp.
|
| [14] |
StruweMVariational Methods—Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 1996SecondBerlin, Springer-Verlag
|
| [15] |
TrudingerNS. On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math., 1967, 20: 721-747
|
| [16] |
YeH. Mass minimizers and concentration for nonlinear Choquard equations in ℝN. Topol. Methods Nonlinear Anal., 2016, 48(2): 393-417
|
RIGHTS & PERMISSIONS
Peking University