A Simons-type Integral Inequality for Minimal Surfaces with Constant Kähler Angle in Complex Projective Spaces

Jie Fei , Xiaoxiang Jiao , Jun Wang

Frontiers of Mathematics ›› : 1 -18.

PDF
Frontiers of Mathematics ›› : 1 -18. DOI: 10.1007/s11464-022-0291-z
Research Article

A Simons-type Integral Inequality for Minimal Surfaces with Constant Kähler Angle in Complex Projective Spaces

Author information +
History +
PDF

Abstract

In this paper, we establish a Simons-type integral inequality for minimal surfaces with constant Kähler angle in complex projective spaces, and we determine all the closed minimal surfaces with the square norm of the second fundamental form satisfying a pinching condition.

Keywords

Complex projective spaces / constant Kähler angle / minimal surfaces / pinching / the second fundamental form

Cite this article

Download citation ▾
Jie Fei, Xiaoxiang Jiao, Jun Wang. A Simons-type Integral Inequality for Minimal Surfaces with Constant Kähler Angle in Complex Projective Spaces. Frontiers of Mathematics 1-18 DOI:10.1007/s11464-022-0291-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bando S, Ohnita Y. Minimal 2-spheres with constant curvature in ℂPn. J. Math. Soc. Japan, 1987, 39(3): 477-487.

[2]

Bolton J, Jensen GR, Rigoli M, Woodward LM. On conformal minimal immersions of S2 into ℂPn. Math. Ann., 1988, 279(4): 599-620.

[3]

Chen BY, Ogiue K. On totally real submanifolds. Trans. Amer. Math. Soc., 1974, 193: 257-266.

[4]

Chern S, do Carmo M, Kobayashi S. Minimal submanifolds of a sphere with second fundamental form of constant length, 1970, New York-Berlin: Springer, 59-75.

[5]

Chern S, Wolfson J. Minimal surfaces by moving frames. Amer. J. Math., 1983, 105(1): 59-83.

[6]

Jiao XX, Peng JG. Minimal 2-spheres in a complex projective space. Differential Geom. Appl., 2007, 25(5): 506-517.

[7]

Kenmotsu K, Masuda K. On minimal surfaces ofconstant curvature in two-dimensional complex space form. J. Reine Angew. Math., 2000, 523: 69-101.

[8]

Li ZQ. Counterexample to the conjecture on minimal S2 in ℂPn with constant Kähler angle. Manuscripta Math., 1995, 88(4): 417-431.

[9]

Ludden G, Okumura M, Yano K. A totally real surface in ℂPn that is not totally geodesic. Proc. Amer. Math. Soc., 1975, 53(1): 186-190.

[10]

Mo XH. Minimal surfaces with constant Kähler angle in complex projective spaces. Proc. Amer. Math. Soc., 1994, 121(2): 569-571.

[11]

Ogata T. Curvature pinching theorem for minimal surfaces with constant Kähler angle in complex projective spaces. Tohoku Math. J. (2), 1991, 43(3): 361-374.

[12]

Ogata T. Curvature pinching theorem for minimal surfaces with constant Kähler angle in complex projective spaces, II. Tohoku Math. J. (2), 1993, 45(2): 271-283.

[13]

Ohnita Y. Minimal surfaces with constant curvature and Kähler angle in complex space forms. Tsukuba J. Math., 1989, 13(1): 191-207.

[14]

Simons J. Minimal varieties in Riemannian manifolds. Ann. of Math. (2), 1968, 88: 62-105.

[15]

Tanno S. Compact complex submanifolds immersed in complex projective spaces. J. Differential Geometry, 1973, 8: 629-641.

[16]

Wang J., Fei J., Jiao X.X., Simons-type inequalities for minimal surfaces with constant Kähler angle in a complex hyperquadric. Differential Geom. Appl., 2023, 88: Paper No. 102001, 21 pp.

[17]

Wang J., Fei J., Xu X.W., Pinching for holomorphic curves in a complex Grassmann manifold G(2, n; ℂ). Differential Geom. Appl., 2022, 80: Paper No. 101840, 15 pp.

AI Summary AI Mindmap
PDF

70

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/