A Simons-type Integral Inequality for Minimal Surfaces with Constant Kähler Angle in Complex Projective Spaces

Jie Fei , Xiaoxiang Jiao , Jun Wang

Frontiers of Mathematics ›› : 1 -18.

PDF
Frontiers of Mathematics ›› : 1 -18. DOI: 10.1007/s11464-022-0291-z
Research Article

A Simons-type Integral Inequality for Minimal Surfaces with Constant Kähler Angle in Complex Projective Spaces

Author information +
History +
PDF

Abstract

In this paper, we establish a Simons-type integral inequality for minimal surfaces with constant Kähler angle in complex projective spaces, and we determine all the closed minimal surfaces with the square norm of the second fundamental form satisfying a pinching condition.

Keywords

Complex projective spaces / constant Kähler angle / minimal surfaces / pinching / the second fundamental form

Cite this article

Download citation ▾
Jie Fei, Xiaoxiang Jiao, Jun Wang. A Simons-type Integral Inequality for Minimal Surfaces with Constant Kähler Angle in Complex Projective Spaces. Frontiers of Mathematics 1-18 DOI:10.1007/s11464-022-0291-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF

48

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/