Stability for Multivalued McKean–Vlasov Stochastic Differential Equations

Huijie Qiao , Jun Gong

Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (4) : 905 -932.

PDF
Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (4) : 905 -932. DOI: 10.1007/s11464-022-0273-1
Research Article

Stability for Multivalued McKean–Vlasov Stochastic Differential Equations

Author information +
History +
PDF

Abstract

The work concerns multivalued McKean–Vlasov stochastic differential equations. First of all, we prove the existence and uniqueness of strong solutions for multivalued McKean–Vlasov stochastic differential equations with non-Lipschitz coefficients. Then, the classical Itô’s formula is extended to that for multivalued McKean–Vlasov stochastic differential equations. Finally, the asymptotic stability of second moments and the almost surely asymptotic stability for their solutions in terms of a Lyapunov function are shown.

Keywords

Multivalued McKean–Vlasov stochastic differential equations / the generalized Itô formula / the asymptotic stability of second moments / the almost surely asymptotic stability

Cite this article

Download citation ▾
Huijie Qiao, Jun Gong. Stability for Multivalued McKean–Vlasov Stochastic Differential Equations. Frontiers of Mathematics, 2025, 20(4): 905-932 DOI:10.1007/s11464-022-0273-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CardaliaguetP Notes on Mean Field Games (from P.-L. Lion’s lectures at College de France), 2012

[2]

CépaE Problème de Skorohod Multivoque. Ann. Probab., 1998, 26(2): 500-532

[3]

ChassagneuxJ-F, CrisanD, DelarueF. A probabilistic approach to classical solutions of the master equation for large population equilibria. Mem. Amer. Math. Soc., 2022, 280(1379): v 123 pp.

[4]

ChiH. Multivalued stochastic McKean–Vlasov equation. Acta Math. Sci. Ser. B (Engl. Ed.), 2014, 34(6): 1731-1740

[5]

DingX, QiaoH. Euler–Maruyama approximations for stochastic McKean–Vlasov equations with non-Lipschitz coefficients. J. Theoret. Probab., 2021, 34(4): 1408-1425

[6]

DingX, QiaoH. Stability for stochastic McKean–Vlasov equations with non-Lipschitz coefficients. SIAM J. Control Optim., 2021, 59(2): 887-905

[7]

HammersleyW, ŠiškaD, SzpruchŁ. McKean–Vlasov SDEs under measure dependent Lyapunov conditions. Ann. Inst. Henri Poincaré Probab. Stat., 2021, 57(2): 1032-1057

[8]

HorowitzJ, KarandikarRL. Mean rates of convergence of empirical measures in the Wasserstein metric. J. Comput. Appl. Math., 1994, 55(3): 261-273

[9]

HuangZ Basis of Stochastic Analysis, 2001 Second Beijing Science Press (in Chinese)

[10]

KacM. Foundations of kinetic theory. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability (1954–1955), Vol. III, 1956 Berkeley, Calif. Univ. California Press 171-197

[11]

LiJ, MinH. Weak solutions of mean-field stochastic differential equations. Stoch. Anal. Appl., 2017, 35(3): 542-568

[12]

McKeanHP,Jr. A class of Markov processes associated with nonlinear parabolic equations. Proc. Nat. Acad. Sci. U.S.A., 1966, 56: 1907-1911

[13]

Qiao H., Wu J.-L., Path independence of the additive functionals for McKean–Vlasov stochastic differential equations with jumps. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2021, 24 (1): Paper No. 2150006, 20 pp.

[14]

RenJ, WuJ, ZhangX. Exponential ergodicity of non-Lipschitz multivalued stochastic differential equations. Bull. Sci. Math., 2010, 134(4): 391-404

[15]

RenY, WangJ. Large deviation for mean-field stochastic differential equations with subdifferential operator. Stoch. Anal. Appl., 2016, 34(2): 318-338

[16]

WangF-Y. Distribution dependent SDEs for Landau type equations. Stochastic Process. Appl., 2018, 128(2): 595-621

[17]

ZhangX. Skorohod problem and multivalued stochastic evolution equations in Banach spaces. Bull. Sci. Math., 2007, 131(2): 175-217

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/