Feigenbaum Julia Sets Concerning Renormalization Transformation

Yuhan Zhang , Jianyong Qiao , Junyang Gao

Frontiers of Mathematics ›› : 1 -29.

PDF
Frontiers of Mathematics ›› : 1 -29. DOI: 10.1007/s11464-022-0118-y
Research Article

Feigenbaum Julia Sets Concerning Renormalization Transformation

Author information +
History +
PDF

Abstract

Considering long-range interaction model on generalized diamond hierarchical lattice, in this paper, we give a perfect description about the dynamical complexity of renormalization transformation Uτmnλ when λ is a natural number. In particular, we prove that the Julia sets of renormalization transformation Uτmnλ for certain positive real parameters τ are Feigenbaum Julia sets, which intersects with the positive real axis in a closed interval.

Keywords

Renormalization transformation / Feigenbaum Julia set / glass transition

Cite this article

Download citation ▾
Yuhan Zhang, Jianyong Qiao, Junyang Gao. Feigenbaum Julia Sets Concerning Renormalization Transformation. Frontiers of Mathematics 1-29 DOI:10.1007/s11464-022-0118-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barata JCA, Goldbaum PS. On the distribution and gap structure of Lee–Yang zeros for the Ising model, periodic and aperiodic couplings. J. Statist. Phys., 2001, 103(5–6): 857-891.

[2]

Beardon AF. Iteration of Rational Functions, 1991, New York: Springer-Verlag.

[3]

Berker AN, Ostlund S. Renormalisation-group calculations of finite systems: order parameter and specific heat for epitaxial ordering. J. Phys. C: Solid State Phys., 1979, 12(22): 4961-4975.

[4]

Bleher PM, Lyubich MY. Julia sets and complex singularities in hierarchical Ising models. Comm. Math. Phys., 1991, 141(3): 453-474.

[5]

Collet P, Eckmann J-P. Iterated Map on the Interval as Dynamical Systems, 2009, Boston, MA: Birkhäuser Boston, Ltd..

[6]

De Melo W, van Strien S. One-dimensional Dynamics, 1993, Berlin: Springer-Verlag.

[7]

Derrida B, de Seze L, Itzykson C. Fractal structure of zeros in hierarchical models. J. Statist. Phys., 1983, 33(3): 559-569.

[8]

Derrida B, Itzykson C, Luck JM. Oscillatory critical amplitudes in hierarchical models. Comm. Math. Phys., 1984, 94(1): 115-132.

[9]

Fisher ME. The nature of critical points. Lect. Theor. Phys. C, 1965, 7: 1-159.

[10]

Ghulghazaryan RG, Ananikian NS. Partition function zeros of the one-dimensional Potts model: the recursive method. J. Phys. A, 2003, 36(23): 6297-6312.

[11]

Goluzin GM. Geometric Theory of Functions of a Complex Variable, 1969, Providence, RI: American Mathematical Society.

[12]

Jiang K., Qiao J., Lan Y., Chaotic renormalization flow in the Potts model induced long-range competition. Phys. Rev. E, 2021, 103(6): Paper No. 062117, 9 pp.

[13]

Jiang YP. Renormalization and Geometry in One-dimensional and Complex Dynamics, 1996, River Edge, NJ: World Scientific Publishing Co., Inc..

[14]

Lee TD, Yang CN. Statistical theory of equations of state and phase transitions, II. Lattice gas and Ising model. Phys. Rev. (2), 1952, 87: 410-419.

[15]

Lubensky TC, Isaacson J. Field theory for the statistics of branched polymers, gelation, and vulcanization. Phys. Rev. Lett., 1978, 41(12): 829-832.

[16]

Monroe JL. Julia sets associated with the Potts model on the Bethe lattice and other recursively solved systems. J. Phys. A, 2001, 34(33): 6405-6412.

[17]

Qiao J. Julia sets and complex singularities in diamond-like hierarchical Potts models. Sci. China Ser. A, 2005, 48(3): 388-412.

[18]

Qiao J., Julia sets and complex singularities of free energies. Mem. Amer. Math. Soc., 2015, 234(1102): vi+89 pp.

[19]

Qiao J, Li Y. On connectivity of Julia sets of Yang–Lee zeros. Comm. Math. Phys., 2001, 222(2): 319-326.

[20]

Qiao J, Yin Y, Gao J. Feigenbaum Julia sets of singularities of free energy. Ergodic Theory Dynam. Systems, 2010, 30(5): 1573-1591.

[21]

Yang CN, Lee TD. Statistical theory of equations of state and phase transitions, I. Theory of condensation. Phys. Rev. (2), 1952, 87: 404-409.

AI Summary AI Mindmap
PDF

72

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/