Flag-transitive 2-(v, k, λ) Designs with (v − 1, k − 1) = 2 and Almost Simple Groups of Suzuki Type

Jianfu Chen , Jiaxin Shen , Shenglin Zhou

Frontiers of Mathematics ›› : 1 -18.

PDF
Frontiers of Mathematics ›› :1 -18. DOI: 10.1007/s11464-022-0011-8
Research Article
research-article

Flag-transitive 2-(v, k, λ) Designs with (v − 1, k − 1) = 2 and Almost Simple Groups of Suzuki Type

Author information +
History +
PDF

Abstract

Suppose that

D
is a 2-(v, k, λ) design with (v − 1, k − 1) = 2 and that G is a flag-transitive group of automorphisms of
D
. It is shown in this paper that either G is 2-transitive on points or G is a subgroup of the group AΓL(1, v) of 1-dimensional semilinear affine transformations, so that
D
has v = pd points (p is a prime). Further, we classify such type of designs admitting an almost simple automorphism group G with socle a Suzuki group Sz(q), by considering the classification under the (even weaker) assumption that k is odd. As its application, we construct two new families of flag-transitive 2-designs with socle Sz(q).

Keywords

2-design / automorphism group / flag-transitive / Suzuki group / 05B05 / 05B25 / 05E18 / 20B25

Cite this article

Download citation ▾
Jianfu Chen, Jiaxin Shen, Shenglin Zhou. Flag-transitive 2-(v, k, λ) Designs with (v − 1, k − 1) = 2 and Almost Simple Groups of Suzuki Type. Frontiers of Mathematics 1-18 DOI:10.1007/s11464-022-0011-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bamberg J, Giudici M, Liebeck MW, Praeger CE, Saxl J. The classification of almost simple 32\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$3\over 2$$\end{document}-transitive groups. Trans. Amer. Math. Soc., 2013, 365(8): 4257-4311

[2]

Biggs NL, White AT. Permutation groups and combinatorial structures, 1979, Cambridge-New York, Cambridge University Press 33

[3]

Biliotti M, Montinaro A, Rizzo P. Nonsymmetric 2-(v, k, λ) designs, with (r, λ) = 1, admitting a solvable flag-transitive automorphism group of affine type. J. Combin. Des., 2019, 27(12): 784-800

[4]

Bosma W, Cannon J, Playoust C. The Magma algebra system, I. The user language. J. Symbolic Comput., 1997, 24(3–4): 235-265

[5]

Bray JN, Holt DF, Roney-Dougal CM. The Maximal Subgroups of the Low Dimensional Finite Classical Groups, 2013, Cambridge, Cambridge University Press 407

[6]

Buekenhout F, Delandtsheer A, Doyen J, Kleidman PB, Liebeck MW, Saxl J. Linear spaces with flag-transitive automorphism groups. Geom. Dedicata, 1990, 36(1): 89-94

[7]

Cameron PJ. Finite permutation groups and finite simple groups. Bull. London Math. Soc., 1981, 13(1): 1-22

[8]

Colbourn CJ, Dinitz JH. The CRC Handbook of Combinatorial Designs, 2007Second EditionBoca Raton, FL, CRC Press

[9]

Dembowski P. Finite Geometries, 1968, Berlin-New York, Springer-Verlag

[10]

Fang XG, Praeger CE. Finite two-arc transitive graphs admitting a Suzuki simple group. Comm. Algebra, 1999, 27(8): 3727-3754

[11]

Foulser DA. Solvable primitive permutation groups of low rank. Trans. Amer. Math. Soc., 1969, 143: 1-54

[12]

Kantor WM. Automorphism groups of designs. Math. Z., 1969, 109: 246-252

[13]

Liebeck MW. The affine permutation groups of rank three. Proc. London Math. Soc. (3), 1987, 54(3): 477-516

[14]

Liebeck MW, Praeger CE, Saxl J. The classification of 32\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$3\over 2$$\end{document}-transitive permutation groups and 12\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$1\over 2$$\end{document}-transitive linear groups. Proc. Amer. Math. Soc., 2019, 147(12): 5023-5037

[15]

Montinaro A, Biliotti M, Francot E. Classification of the non-trivial 2-(v, k, λ) designs, with (r, λ) = 1 and λ > 1, admitting a non-solvable flag-transitive automorphism group of affine type. J. Algebraic Combin., 2022, 55(3): 853-889

[16]

Suzuki M. On a class of doubly transitive groups. Ann. of Math. (2), 1962, 75: 105-145

[17]

Wielandt H. Finite Permutation Groups, 1964, New York-London, Academic Press

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

15

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/