PDF
Abstract
In this paper, we use the theories of directed graph and diagonally similar transformation to give some new inequalities called Brualdi-type inequalities on spectral radius for the Hadamard product of nonnegative tensors, which improve some existing ones in [Linear Multilinear Algebra, 2018, 66(6): 1199–1214] and [Bull. Iranian Math. Soc., 2020, 46(4): 1003–1026]. Furthermore, we also establish the theoretical comparison between the newly proposed bounds under certain conditions. Finally, the validity and the sharpness of the main results are illustrated by some numerical examples.
Keywords
Nonnegative tensors
/
spectral radius
/
Hadamard product
/
theoretical comparison
Cite this article
Download citation ▾
Yangyang Xu.
Brualdi-type Inequalities on Spectral Radius for the Hadamard Product of Nonnegative Tensors.
Frontiers of Mathematics 1-22 DOI:10.1007/s11464-021-0485-9
| [1] |
Brualdi R. Matrices, eigenvalues, and directed graphs. Linear and Multilinear Algebra, 1982, 11(2): 143-165
|
| [2] |
Bu C, Jin X, Li H, Deng C. Brauer-type eigenvalue inclusion sets and the spectral radius of tensors. Linear Algebra Appl., 2017, 512: 234-248
|
| [3] |
Bu C, Wei Y, Sun L, Zhou J. Brualdi-type eigenvalue inclusion sets of tensors. Linear Algebra Appl., 2015, 480: 168-175
|
| [4] |
Chang K, Qi L, Zhang T. A survey on the spectral theory of nonnegative tensors. Numer. Linear Algebra Appl., 2013, 20(6): 891-912
|
| [5] |
Ding W, Wei Y. Theory and Computation of Tensors—Multi-dimensional Arrays, 2016, London: Academic Press
|
| [6] |
Fang M. Bounds on the eigenvalues of the Hadamard product and the Fan product of matrices. Linear Algebra Appl., 2007, 425(1): 7-15
|
| [7] |
Friedland S, Gaubert S, Han L. Perron-Frobenius theorem for nonnegative multilinear forms and extensions. Linear Algebra Appl., 2013, 438(2): 738-749
|
| [8] |
Hillar C., Lim L., Most tensor problems are NP-hard. J. ACM, 2013, 60(6): Art. 45, 39 pp.
|
| [9] |
Horn R, Johnson C. Topics in Matrix Analysis, 1991, Cambridge: Cambridge University Press
|
| [10] |
Huang R. Some inequalities for the Hadamard product and the Fan product of matrices. Linear Algebra Appl., 2008, 428(7): 1551-1559
|
| [11] |
Kannan M, Shaked-Monderer N, Berman A. Some properties of strong H-tensors and general H-tensors. Linear Algebra Appl., 2015, 476: 42-55
|
| [12] |
Li C, Chen Z, Li Y. A new eigenvalue inclusion set for tensors and its applications. Linear Algebra Appl., 2015, 481: 36-53
|
| [13] |
Li C, Li Y, Kong X. New eigenvalue inclusion sets for tensors. Numer. Linear Algebra Appl., 2014, 21(1): 39-50
|
| [14] |
Li C, Zhou J, Li Y. A new Brauer-type eigenvalue localization set for tensors. Linear Multilinear Algebra, 2016, 64(4): 727-736
|
| [15] |
Li J, Hai H. Some new inequalities for the Hadamard product of nonnegative matrices. Linear Algebra Appl., 2020, 606: 159-169
|
| [16] |
Li Y, Li Y, Wang R, Wang Y. Some new bounds on eigenvalues of the Hadamard product and the Fan product of matrices. Linear Algebra Appl., 2010, 432(2–3): 536-545
|
| [17] |
Lim L-H. Singular values and eigenvalues of tensors: a variational approach. IEEE CAMSAP 2005—The First International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (Puerto Vallarta, Mexico), 2005, Piscataway, NJ: IEEE 129-132
|
| [18] |
Liu Q, Chen G. On two inequalities for the Hadamard product and the Fan product of matrices. Linear Algebra Appl., 2009, 431(5–7): 974-984
|
| [19] |
Liu Y, Zhou G, Ibrahim N. An always convergent algorithm for the largest eigenvalue of an irreducible nonnegative tensor. J. Comput. Appl. Math., 2010, 235(1): 286-292
|
| [20] |
Ng M, Qi L, Zhou G. Finding the largest eigenvalue of a nonnegative tensor. SIAM J. Matrix Anal. Appl., 2009, 31(3): 1090-1099
|
| [21] |
Ni Q, Qi L, Wang F. An eigenvalue method for testing positive definiteness of a multi-variate form. IEEE Trans. Automat. Control, 2008, 53(5): 1096-1107
|
| [22] |
Panigrahy K, Mishra D, Peña J. On C-tensor and its application to eigenvalue. Linear Multilinear Algebra, 2022, 70(21): 6279-6296
|
| [23] |
Qi L. Eigenvalues of a real supersymmetric tensor. J. Symbolic Comput., 2005, 40(6): 1302-1324
|
| [24] |
Qi L. Hankel tensors: Associated Hankel matrices and Vandermonde decomposition. Commun. Math. Sci., 2015, 13(1): 113-125
|
| [25] |
Qi L, Luo Z. Tensor Analysis: Spectral Theory and Special Tensors, 2017, Philadelphia, PA: Society for Industrial and Applied Mathematics
|
| [26] |
Qi L, Sun W, Wang Y. Numerical multilinear algebra and its applications. Front. Math. China, 2007, 2(4): 501-526
|
| [27] |
Qi L, Xu C, Xu Y. Nonnegative tensor factorization, completely positive tensors, and a hierarchical elimination algorithm. SIAM J. Matrix Anal. Appl., 2014, 35(4): 1227-1241
|
| [28] |
Shao J. A general product of tensors with applications. Linear Algebra Appl., 2013, 439(8): 2350-2366
|
| [29] |
Sun L, Zheng B, Bu C. Characterizations of the spectral radius of nonnegative weakly irreducible tensors via a digraph. Linear Multilinear Algebra, 2016, 64(4): 737-744
|
| [30] |
Sun L, Zheng B, Zhou J, Yan H. Some inequalities for the Hadamard product of tensors. Linear Multilinear Algebra, 2018, 66(6): 1199-1214
|
| [31] |
Wang G, Zhang Y, Wang Y. Brauer-type bounds for Hadamard product of nonnegative tensors. Front. Math. China, 2020, 15(3): 555-570
|
| [32] |
Xu Y, Li Y, Li Z. Some results on the Hadamard product of tensors. Bull. Iranian Math. Soc., 2019, 45(4): 1193-1219
|
| [33] |
Xu Y., Shao L., He G., New S-type localization sets for C-eigenvalues of a piezoelectric-type tensor. Appl. Math. Lett., 2024, 150: Paper No. 108955, 6 pp.
|
| [34] |
Xu Y., Zheng B., Zhao R., Some results on Brauer-type and Brualdi-type eigenvalue inclusion sets for tensors. Comput. Appl. Math., 2019, 38(2): Paper No. 74, 13 pp.
|
| [35] |
Xu Y., Zheng B., Zhao R., Some improved Ky Fan type eigenvalue inclusion sets for tensors. Calcolo, 2020, 57(4): Paper No. 40, 28 pp.
|
| [36] |
Xu Y, Zheng B, Zhao R. Some bounds of eigenvalues for Hadamard product and Fan product of tensors. Bull. Iranian Math. Soc., 2020, 46(4): 1003-1026
|
| [37] |
Yang Y, Yang Q. Further results for Perron-Frobenius Theorem for nonnegative tensors. SIAM J. Matrix Anal. Appl., 2010, 31(5): 2517-2530
|
| [38] |
Zhou D, Chen G, Wu G, Zhang X. On some new bounds for eigenvalues of the Hadamard product and the Fan product of matrices. Linear Algebra Appl., 2013, 438(3): 1415-1426
|
| [39] |
Zhou J, Sun L, Wei Y, Bu C. Some characterizations of M-tensors via digraphs. Linear Algebra Appl., 2016, 495: 190-198
|