Some Results on the Existence of Solutions for Quasilinear Elliptic Equations with Critical Exponent

Jianhua Chen , Xianjiu Huang , Pingying Ling , Jijiang Sun

Frontiers of Mathematics ›› : 1 -30.

PDF
Frontiers of Mathematics ›› :1 -30. DOI: 10.1007/s11464-021-0380-4
Research Article
research-article

Some Results on the Existence of Solutions for Quasilinear Elliptic Equations with Critical Exponent

Author information +
History +
PDF

Abstract

In this paper, we study the following quasilinear elliptic equation

Δu+V(x)u[Δ(1+u2)12]u2(1+u2)12=f(u)+|u|22u,xRN,
where N ≥ 3, V(x) is a potential function and f satisfies some suitable conditions. We prove the existence of a positive ground state solution via Pohožaev manifold.

Keywords

quasilinear elliptic equation / ground state solution / Pohožaev manifold / 35J15 / 35J20

Cite this article

Download citation ▾
Jianhua Chen, Xianjiu Huang, Pingying Ling, Jijiang Sun. Some Results on the Existence of Solutions for Quasilinear Elliptic Equations with Critical Exponent. Frontiers of Mathematics 1-30 DOI:10.1007/s11464-021-0380-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bartsch T, Wang ZQ. Existence and multiplicity results for some superlinear elliptic problems on ℝN. Comm. Partial Differential Equations, 1995, 20(9–10): 1725-1741

[2]

Bass FG, Nasanov NN. Nonlinear electromagnetic-spin waves. Phys. Rep., 1990, 189(4): 165-223

[3]

Berestycki H, Lions P-L. Nonlinear scalar field equations, I. Existence of a ground state. Arch. Rational Mech. Anal., 1983, 82(4): 313-345

[4]

Brandi H, Manus C, Mainfray G, Lehner T, Bonnaud G. Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, I, Paraxial approximation. Phys. Fluids B, 1993, 5: 3539-3550

[5]

Brézis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math., 1983, 36(4): 437-477

[6]

Chen JH, Huang XJ, Qin DD, Cheng BT. Existence and asymptotic behavior of standing wave solutions for a class of generalized quasilinear Schrödinger equations with critical Sobolev exponents. Asymptot. Anal., 2020, 120(3–4): 199-248

[7]

Chen J.H., Rădulescu V.D., Sun J.J., Zhang J., Another look at quasilinear Schrödinger equations with prescribed mass via dual method. 2025, arXiv:2506.07346

[8]

Chen J.H., Tang X.H., Cheng B.T., Existence and nonexistence of positive solutions for a class of generalized quasilinear Schrödinger equations involving a Kirchhoff-type perturbation with critical Sobolev exponent. J. Math. Phys., 2018, 59(2): Paper No. 021505, 24 pp.

[9]

Chen JH, Tang XH, Gao Z, Cheng BT. Ground state sign-changing solutions for a class of generalized quasilinear Schrödinger equations with a Kirchhoff-type perturbation. J. Fixed Point Theory Appl., 2017, 19(4): 3127-3149

[10]

Chen S, Wu X. Existence of positive solutions for a class of quasilinear Schrödinger equations of Choquard type. J. Math. Anal. Appl., 2019, 475(2): 1754-1777

[11]

Chen ST, Tang XH. Berestycki-Lions conditions on ground state solutions for a non-linear Schrödinger equation with variable potentials. Adv. Nonlinear Anal., 2020, 9(1): 496-515

[12]

Chu C, Liu H. Existence of positive solutions for a quasilinear Schrödinger equation. Nonlinear Anal. Real World Appl., 2018, 44: 118-127

[13]

Colin M, Jeanjean L. Solutions for a quasilinear Schrödinger equation: a dual approach. Nonlinear Anal., 2004, 56(2): 213-226

[14]

Deng Y, Huang W. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete Contin. Dyn. Syst., 2017, 37(8): 4213-4230

[15]

Deng Y., Peng S., Wang J., Nodal soliton solutions for generalized quasilinear Schrödinger equations. J. Math. Phys., 2014, 55(5): Paper No. 051501, 16 pp.

[16]

Deng Y, Peng S, Yan S. Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth. J. Differential Equations, 2015, 258(1): 115-147

[17]

Deng Y, Peng S, Yan S. Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations. J. Differential Equations, 2016, 260(2): 1228-1262

[18]

Deng Y, Shuai W. Existence and concentration behavior of sign-changing solutions for quasilinear Schrödinger equations. Sci. China Math., 2016, 59(6): 1095-1112

[19]

Do Ó JM, Miyagaki OH, Soares SHM. Soliton solutions for quasilinear Schrödinger equations with critical growth. J. Differential Equations, 2010, 248(4): 722-744

[20]

Furtado M.F., Silva E.D., Silva M.L., Existence of solution for a generalized quasilinear elliptic problem. J. Math. Phys., 2017, 58(3): Paper No. 031503, 14 pp.

[21]

Hasse RW. A general method for the solution of nonlinear soliton and kink Schrödinger equations. Z. Phys. B, 1980, 37(1): 83-87

[22]

Huang W, Wang L, Wang QF. Existence and multiplicity of sign-changing solitary waves for a quasilinear Schrödinger equation. Appl. Anal., 2022, 101(13): 4533-4552

[23]

Kosevich AM, Ivanov BA, Kovalev AS. Magnetic solitons. Phys. Rep., 1990, 194(3–4): 117-238

[24]

Kurihara S. Large-amplitude quasi-solitons in superfluid films. J. Phys. Soc. Jpn., 1981, 50: 3262-3267

[25]

Landau LD, Lifshitz EM. Quantum Mechanics: Non-relativistic Theory, 1958, Reading, MA, Addison-Wesley Publishing Company, Inc.3

[26]

Lange H, Poppenberg M, Teismann H. Nash-Moser methods for the solution of quasilinear Schrödinger equations. Comm. Partial Differential Equations, 1999, 24(7–8): 1399-1418

[27]

Li Q., Nie J., Zhang W., Multiple normalized solutions for fractional Schrödinger equations with lack of compactness. J. Geom. Anal., 2025, 35(2): Paper No. 59, 30 pp.

[28]

Li Q, Teng K, Wu X. Ground state solutions and geometrically distinct solutions for generalized quasilinear Schrödinger equation. Math. Methods Appl. Sci., 2017, 40(6): 2165-2176

[29]

Li Q, Wu X. Multiple solutions for generalized quasilinear Schrödinger equations. Math. Methods Appl. Sci., 2017, 40(5): 1359-1366

[30]

Liu J, Wang Y, Wang Z. Soliton solutions for quasilinear Schrödinger equations, II. J. Differential Equations, 2003, 187(2): 473-493

[31]

Liu J, Wang Y, Wang Z. Solutions for quasilinear Schrödinger equations via the Nehari method. Comm. Partial Differential Equations, 2004, 29(5–6): 879-901

[32]

Liu J, Wang Z. Soliton solutions for quasilinear Schrödinger equations, I. Proc. Amer. Math. Soc., 2003, 131(2): 441-448

[33]

Liu X, Liu J, Wang Z. Quasilinear elliptic equations with critical growth via perturbation method. J. Differential Equations, 2013, 254(1): 102-124

[34]

Liu X, Liu J, Wang Z. Ground states for quasilinear Schrödinger equations with critical growth. Calc. Var. Partial Differential Equations, 2013, 46(3–4): 641-669

[35]

Moameni A. Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in ℝN. J. Differential Equations, 2006, 229(2): 570-587

[36]

Papageorgiou NS, Rădulescu VD, Zhang W. Multiple solutions with sign information for double-phase problems with unbalanced growth. Bull. Lond. Math. Soc., 2025, 57(2): 638-656

[37]

Papageorgiou N.S., Zhang J., Zhang W., Multiple solutions with sign information for Robin equations with indefinite potential. Bull. Math. Sci., 2025, 15(1): Paper No. 2450013, 23 pp.

[38]

Poppenberg M, Schmitt K, Wang Z. On the existence of soliton solutions to quasilinear Schrödinger equations. Calc. Var. Partial Differential Equations, 2002, 14(3): 329-344

[39]

Shen Y, Wang Y. Soliton solutions for generalized quasilinear Schrödinger equations. Nonlinear Anal., 2013, 80: 194-201

[40]

Shen Y, Wang Y. A class of generalized quasilinear Schrödinger equations. Commun. Pure Appl. Anal., 2016, 15(3): 853-870

[41]

Willem M. Minimax Theorems, 1996, Boston, MA, Birkhäuser Boston, Inc.

[42]

Yang J., Wang Y., Abdelgadir A.A., Soliton solutions for quasilinear Schödinger equations. J. Math. Phys., 2013, 54(7): Paper No. 071502, 19 pp.

[43]

Yang XY, Tang XH, Gu GZ. Concentration behavior of ground states for a generalized quasilinear Choquard equation. Math. Methods Appl. Sci., 2020, 43(6): 3569-3585

[44]

Zhang W, Zhang J. Planar Hénon-type equation with Trudinger–Moser critical growth. Discrete Contin. Dyn. Syst., 2025, 45(11): 4529-4553

[45]

Zhang W, Zhang J, Rădulescu VD. Semiclassical states for the pseudo-relativistic Schrödinger equation with competing potentials. Commun. Math. Sci., 2025, 23(2): 465-507

[46]

Zhu X., Li F., Liang Z., Existence of ground state solutions to a generalized quasilinear Schrödinger–Maxwell system. J. Math. Phys., 2016, 57(10): Paper No. 101505, 15 pp.

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

7

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/