The p-spectral Radius of Berge-keyring Hypergraphs

Xue Ji , Liying Kang

Frontiers of Mathematics ›› : 1 -17.

PDF
Frontiers of Mathematics ›› :1 -17. DOI: 10.1007/s11464-021-0298-x
Research Article
research-article

The p-spectral Radius of Berge-keyring Hypergraphs

Author information +
History +
PDF

Abstract

Let G be a simple graph. We say that a hypergraph

H
is a Berge-G if there is a bijection
ψ:E(G)E(H))
such that eψ(e) for all eE(G). For any r-uniform hypergraph
H
and a real number p ≥ 1, the p-spectral radius of
H
is defined as
λ(p)(H)=maxxRn,xp=1r{i1,i2,,ir}E(H)xi1xi2xir.
A keyring Cn(k) is a graph of order n obtained from a cycle of length nk by appending k leaves to one of vertices of the cycle. In this paper, we obtain the 3-uniform hypergraphs with maximum p-spectral radius for p ≥ 1 among 3-uniform Berge-G hypergraphs when G is a keyring.

Keywords

p-spectral radius / Berge-hypergraph / keyring / uniform hypergraph / 05C65 / 15A18

Cite this article

Download citation ▾
Xue Ji, Liying Kang. The p-spectral Radius of Berge-keyring Hypergraphs. Frontiers of Mathematics 1-17 DOI:10.1007/s11464-021-0298-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Axenovich M, Gyárfás A. A note on Ramsey numbers for Berge-G hypergraphs. Discrete Math., 2019, 342(5): 1245-1252

[2]

Cooper J, Dutle A. Spectra of uniform hypergraphs. Linear Algebra Appl., 2012, 436(9): 3268-3299

[3]

Gerbner D, Methuku A, Omidi G, Vizer M. Ramsey problems for Berge hypergraphs. SIAM J. Discrete Math., 2020, 34(1): 351-369

[4]

Gerbner D, Palmer C. Extremal results for Berge hypergraphs. SIAM J. Discrete Math., 2017, 31(4): 2314-2327

[5]

Grósz D., Methuku A., Tompkins C., Uniformity thresholds for the asymptotic size of extremal Berge-F-free hypergraphs. European J. Combin., 2020, 88: Paper No. 103109, 10 pp.

[6]

Gruslys V., Letzter S., Morrison N., Hypergraph Lagrangians I: The Frankl–Füredi conjecture is false. Adv. Math., 2020, 365: Paper No. 107063, 30 pp.

[7]

Kang L, Liu L, Lu L, Wang Z. The extremal p-spectral radius of Berge-hypergraphs. Linear Algebra Appl., 2021, 610: 608-624

[8]

Kang L, Liu L, Shan E. The eigenvectors to the p-spectral radius of general hypergraphs. J. Comb. Optim., 2019, 38(2): 556-569

[9]

Kang L., Nikiforov V., Extremal problems for the p-spectral radius of graphs. Electron. J. Combin., 2014, 21(3): Paper No. 3.21, 23 pp.

[10]

Kang L, Nikiforov V, Yuan X. The p-spectral radius of k-partite and k-chromatic uniform hypergraphs. Linear Algebra Appl., 2015, 478: 81-107

[11]

Keevash P, Lenz J, Mubayi D. Spectral extremal problems for hypergraphs. SIAM J. Discrete Math., 2014, 28(4): 1838-1854

[12]

Li H, Shao J, Qi L. The extremal spectral radii of k-uniform supertrees. J. Comb. Optim., 2016, 32(3): 741-764

[13]

Lu L., The maximum p-spectral radius of hypergraphs with m edges. 2018, arXiv:1803. 08653

[14]

Motzkin T, Straus E. Maxima for graphs and a new proof of a theorem of Turán. Canadian J. Math., 1965, 17: 533-540

[15]

Nikiforov V. Analytic methods for uniform hypergraphs. Linear Algebra Appl., 2014, 457: 455-535

[16]

Palmer C, Tait M, Timmons C, Wagner A. Turán numbers for Berge-hypergraphs and related extremal problems. Discrete Math., 2019, 342(6): 1553-1563

[17]

Salia N., Tompkins C., Wang Z., Zamora O., Ramsey numbers of Berge-hypergraphs and related structures. Electron. J. Combin., 2019, 26(4): Paper No. 4.40, 25 pp.

[18]

Talbot J. Lagrangians of hypergraphs. Combin. Probab. Comput., 2002, 11(2): 199-216

[19]

Zhou Y, Kang L, Liu L, Shan E. Extremal problems for the p-spectral radius of Berge hypergraphs. Linear Algebra Appl., 2020, 600: 22-39

[20]

Zhu H, Kang L, Ni Z, Shan E. The Turán number of Berge-K4 in 3-uniform hypergraphs. SIAM J. Discrete Math., 2020, 34(3): 1485-1492

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

10

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/