The p-spectral Radius of Berge-keyring Hypergraphs
Xue Ji , Liying Kang
Frontiers of Mathematics ›› : 1 -17.
The p-spectral Radius of Berge-keyring Hypergraphs
Let G be a simple graph. We say that a hypergraph
p-spectral radius / Berge-hypergraph / keyring / uniform hypergraph / 05C65 / 15A18
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
Grósz D., Methuku A., Tompkins C., Uniformity thresholds for the asymptotic size of extremal Berge-F-free hypergraphs. European J. Combin., 2020, 88: Paper No. 103109, 10 pp. |
| [6] |
Gruslys V., Letzter S., Morrison N., Hypergraph Lagrangians I: The Frankl–Füredi conjecture is false. Adv. Math., 2020, 365: Paper No. 107063, 30 pp. |
| [7] |
|
| [8] |
|
| [9] |
Kang L., Nikiforov V., Extremal problems for the p-spectral radius of graphs. Electron. J. Combin., 2014, 21(3): Paper No. 3.21, 23 pp. |
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
Lu L., The maximum p-spectral radius of hypergraphs with m edges. 2018, arXiv:1803. 08653 |
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
Salia N., Tompkins C., Wang Z., Zamora O., Ramsey numbers of Berge-hypergraphs and related structures. Electron. J. Combin., 2019, 26(4): Paper No. 4.40, 25 pp. |
| [18] |
|
| [19] |
|
| [20] |
|
Peking University
/
| 〈 |
|
〉 |