Multiple Brake Orbits on the Cotangent Space of Torus

Fanjing Wang , Duanzhi Zhang

Frontiers of Mathematics ›› : 1 -14.

PDF
Frontiers of Mathematics ›› :1 -14. DOI: 10.1007/s11464-021-0296-z
Research Article

Multiple Brake Orbits on the Cotangent Space of Torus

Author information +
History +
PDF

Abstract

In this paper, we study the multiplicity of brake orbits on certain symplectic manifold. We give a criterion to find brake orbits for even Hamiltonian on the cotangent space of $\mathbb{T}^{n}$ by the methods of the Maslov-index theory and a critical point theorem formulated by Bartsch and Wang in [1]. More specifically, if H is even and satisfies certain growth conditions, one can find more brake orbits on the cotangent space of $\mathbb{T}^{n}$.

Keywords

Brake orbit / Maslov-type index / torus / saddle point reduction / critical point theorem

Cite this article

Download citation ▾
Fanjing Wang, Duanzhi Zhang. Multiple Brake Orbits on the Cotangent Space of Torus. Frontiers of Mathematics 1-14 DOI:10.1007/s11464-021-0296-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bartsch T, Wang ZQ. Periodic solutions of spatially periodic, even Hamiltonian systems. J. Differential Equations, 1997, 135(1): 103-128.

[2]

Cappell SE, Lee R, Miller EY. On the Maslov index. Comm. Pure Appl. Math., 1994, 47(2): 121-186.

[3]

Felmer PL. Periodic solutions of spatially periodic Hamiltonian systems. J. Differential Equations., 1992, 98(1): 143-168.

[4]

Liu C. Asymptotically linear Hamiltonian systems with Lagrangian boundary conditions. Pacific J. Math., 2007, 232(1): 233-255.

[5]

Liu C. Maslov-type index theory for symplectic paths with Lagrangian boundary conditions. Adv. Nonlinear Stud., 2007, 7(1): 131-161.

[6]

Liu C, Zhang D. Iteration theory of L-index and multiplicity of brake orbits. J. Differential Equations, 2014, 257(4): 1194-1245.

[7]

Liu C, Zhang D. Seifert conjecture in the even convex case. Comm. Pure Appl. Math., 2014, 67(10): 1563-1604.

[8]

Long YM. Bott formula of the Maslov-type index theory. Pacific J. Math., 1999, 187(1): 113-149.

[9]

Long YM. The topological structures of ω-subsets of symplectic groups. Acta Math. Sinica (Chinese Ser.), 1999, 42(2): 763-765.

[10]

Long YM. Index Theory for Symplectic Paths with Applictions, 2002, Basel: Birkhäuser Verlag, xxiv+380.

[11]

Long YM, Zhang D, Zhu C. Multiple brake orbits in bounded convex symmetric domains. Adv. Math., 2006, 203(2): 568-635.

[12]

Rabinowitz PH. On a class of functionals invariant under a ℤn-action. Trans. Amer. Math. Soc., 1988, 310(1): 303-311.

AI Summary AI Mindmap
PDF

67

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/