The Symmetric Rank of 2 × 2 × ⋯ × 2 Symmetric Tensors over an Arbitrary Field

Xiaoyu Song , Baodong Zheng , Riguang Huang , Jinli Xu

Frontiers of Mathematics ›› : 1 -25.

PDF
Frontiers of Mathematics ›› : 1 -25. DOI: 10.1007/s11464-020-0165-1
Research Article

The Symmetric Rank of 2 × 2 × ⋯ × 2 Symmetric Tensors over an Arbitrary Field

Author information +
History +
PDF

Abstract

The symmetric rank problem of 2 × 2 × ⋯ × 2 symmetric tensors are related to Waring’s problem of binary forms. In this paper, we characterize the symmetric rank of 2 × 2 × ⋯ × 2 symmetric tensors when the symmetric rank is 1 and 2 in arbitrary characteristic (either zero or strictly larger than the order of a tensor). Moreover, we characterize the symmetric rank for 2 × 2 × 2 symmetric tensors over the fields where the characteristic is zero or larger than three or $\mathbb{F}_{2}$ or $\mathbb{F}_{3}$.

Keywords

Sylvester Theorem / Waring’s problem / binary forms / symmetric tensor rank / arbitrary field

Cite this article

Download citation ▾
Xiaoyu Song,Baodong Zheng,Riguang Huang,Jinli Xu. The Symmetric Rank of 2 × 2 × ⋯ × 2 Symmetric Tensors over an Arbitrary Field. Frontiers of Mathematics 1-25 DOI:10.1007/s11464-020-0165-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF

47

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/