The Symmetric Rank of 2 × 2 × ⋯ × 2 Symmetric Tensors over an Arbitrary Field

Xiaoyu Song , Baodong Zheng , Riguang Huang , Jinli Xu

Frontiers of Mathematics ›› : 1 -25.

PDF
Frontiers of Mathematics ›› : 1 -25. DOI: 10.1007/s11464-020-0165-1
Research Article

The Symmetric Rank of 2 × 2 × ⋯ × 2 Symmetric Tensors over an Arbitrary Field

Author information +
History +
PDF

Abstract

The symmetric rank problem of 2 × 2 × ⋯ × 2 symmetric tensors are related to Waring’s problem of binary forms. In this paper, we characterize the symmetric rank of 2 × 2 × ⋯ × 2 symmetric tensors when the symmetric rank is 1 and 2 in arbitrary characteristic (either zero or strictly larger than the order of a tensor). Moreover, we characterize the symmetric rank for 2 × 2 × 2 symmetric tensors over the fields where the characteristic is zero or larger than three or $\mathbb{F}_{2}$ or $\mathbb{F}_{3}$.

Keywords

Sylvester Theorem / Waring’s problem / binary forms / symmetric tensor rank / arbitrary field

Cite this article

Download citation ▾
Xiaoyu Song, Baodong Zheng, Riguang Huang, Jinli Xu. The Symmetric Rank of 2 × 2 × ⋯ × 2 Symmetric Tensors over an Arbitrary Field. Frontiers of Mathematics 1-25 DOI:10.1007/s11464-020-0165-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bender MR, Faugère J-C, Perret L, Tsigaridas E. A superfast randomized algorithm to decompose binary forms. Proceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation, 2016, New York: ACM, 79-86.

[2]

Bernardi A, Gimigliano A, Ida M. Computing symmetric rank for symmetric tensors. J. Symbolic Comput., 2011, 46(1): 34-53.

[3]

Beylkin G, Mohlenkamp MJ. Algorithms for numerical analysis in high dimensions. SIAM J. Sci. Comput., 2005, 26(6): 2133-2159.

[4]

Brachat J, Comon P, Mourrain B, Tsigaridas E. Symmetric tensor decomposition. Linear Algebra Appl., 2010, 433(11–12): 1851-1872.

[5]

Comas G, Seiguer M. On the rank of a binary form. Found. Comput. Math., 2011, 11(1): 65-78.

[6]

Comon P. Tensor Decompositions—State of the Art and Applications, 2002, Oxford: Oxford Univ. Press.

[7]

Comon P, Golub G, Lim L-H, Mourrain B. Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl., 2008, 30(3): 1254-1279.

[8]

Comon P, Rajih M. Blind identification of under-determined mixtures based on the characteristic function. Signal Process, 2006, 86(9): 2271-2281.

[9]

De Silva V, Lim L-H. Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl., 2008, 31(3): 1084-1127.

[10]

Gelfand IM, Kapranov MM, Zelevinsky AV. Discriminants, Resultants, and Multidimensional Determinants, 2008, Boston, MA: Birkhäuser Boston, Inc..

[11]

Hackbusch W, Khoromskij BN, Tyrtyshnikov EE. Hierarchical Kronecker tensor-product approximations. J. Numer. Math., 2005, 13(2): 119-156.

[12]

Helmke U. Waring’s problem for binary forms. J. Pure Appl. Algebra, 1992, 80(1): 29-45.

[13]

Hitchcock FL. The expression of a tensor or a polyadic as a sum of products. J. Math. Phys., 1927, 6(1–4): 164-189.

[14]

Hitchcock FL. Multiple invariants and generalized rank of a P-way matrix or tensor. J. Math. Phys., 1928, 7(1–4): 39-79.

[15]

Iarrobino A, Kanev V. Power Sums, Gorenstein Algebras, and Determinantal Loci, 1999, Berlin: Springer-Verlag.

[16]

Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Rev., 2009, 51(3): 455-500.

[17]

Landsberg JM, Teitler Z. On the ranks of tensors and symmetric tensors. Found. Comput. Math., 2010, 10(3): 339-366.

[18]

Reznick B., Sums of even powers of real linear forms. Mem. Amer. Math. Soc., 1992, 96(463): viii+155 pp.

[19]

Reznick B. On the Length of Binary Forms, 2013, New York: Springer.

[20]

Stavrou SG. Canonical forms of 2 × 2 × 2 and 2 × 2 × ⋯ × 2 symmetric tensors over prime fields. Linear Multilinear Algebra, 2014, 62(9): 1169-1186.

[21]

Stavrou SG. Canonical forms of order-k (k = 2, 3,4) symmetric tensors of format 3 × ⋯ × 3 over prime fields. Linear and Multilinear Algebra, 2015, 63(6): 1111-1124.

[22]

Sylvester JJ. Sur une extension d’un théorème de Clebsch relatif aux courbes du quatrième degré. C. R. Math. Acad. Sci. Paris, 1886, 102: 1532-1534.

[23]

Sylvester JJ. An essay on canonical forms, supplement to a sketch of a memoir on elimination, transformation and canonical forms. The Collected Mathematical Papers of James Joseph Sylvester, Vol. I (1837–1853), 1904, Cambridge: Cambridge University Press, 203-216.

[24]

Sylvester JJ. On a remarkable discovery in the theory of canonical forms and of hyper-determinants. The Collected Mathematical Papers of James Joseph Sylvester, Vol. I (1837–1853), 1904, Cambridge: Cambridge University Press, 265-283.

[25]

Tokcan N. On the Waring rank of binary forms. Linear Algebra Appl., 2017, 524: 250-262.

[26]

Vasilescu MAO, Terzopoulos D. Multilinear analysis of image ensembles: TensorFaces. Computer Vision—ECCV 2002, 2002, Berlin: Springer, 447-460.

[27]

Wang HC, Ahuja N. Facial expression decomposition. Proceedings of the 9th IEEE International Conference on Computer Vision (ICCV), 2003, Piscataway, NJ: IEEE, 958-965.

[28]

Zheng BD, Huang RG, Song XY, Xu JL. On Comon’s conjecture over arbitrary fields. Linear Algebra Appl., 2020, 587: 228-242.

AI Summary AI Mindmap
PDF

90

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/