Autosomal dominant tibial muscular dystrophy in Estonia

Siiri Sarv , Tiia Reimand , Eve Õiglane-Shlik , Sanna Puusepp , Sander Pajusalu , Ülle Murumets , Teemu Turku , Lisanna Põlluaas , Laura Mihkla , Sandra Ütt , Katrin Gross-Paju , Liis Väli , Tiina Kahre , Marco Savarese , Peter Hackman , Bjarne Udd , Katrin Õunap

Journal of Translational Genetics and Genomics ›› 2025, Vol. 9 ›› Issue (4) : 368 -80.

PDF
Journal of Translational Genetics and Genomics ›› 2025, Vol. 9 ›› Issue (4) :368 -80. DOI: 10.20517/jtgg.2025.72
Original Article

Autosomal dominant tibial muscular dystrophy in Estonia

Author information +
History +
PDF

Abstract

Aim: Tibial muscular dystrophy (TMD; MIM#600334, ORPHA:609) is an adult-onset, slowly progressive distal myopathy resulting from dominant variants in exon 364 of the TTN gene. The Finnish founder variant (FINmaj), characterized by an 11-bp insertion/deletion, causes autosomal dominant (AD) TMD in heterozygous individuals. Our aim was to assess the prevalence and origin of the FINmaj variant within the Estonian population.

Methods: We reanalyzed next-generation sequencing panels and whole-exome sequencing data from 2014 to 2025 to identify individuals carrying the FINmaj variant. The study included three cohorts: Tartu University Hospital (n = 15,178), West Tallinn Central Hospital (n = 52), and the Estonian Genome Center (n = 4,776). Most carriers of the FINmaj variant underwent muscle magnetic resonance imaging (MRI) and haplotype analysis.

Results: We identified 13 individuals from five families with the heterozygous FINmaj variant, including two individuals with autosomal recessive limb-girdle muscular dystrophy-10 and eleven with AD TMD. By the age of 50, all patients diagnosed with TMD showed symptoms of distal myopathy and characteristic MRI findings. The carrier frequency of the FINmaj variant in the Estonian cohort was one in 3,036, with no carriers in the Estonian Genome Center cohort. The average haplotype length was estimated to be ~4.1 Mb in Estonians, compared to ~5 Mb in Finns.

Conclusion: AD TMD is one of the most prevalent but underdiagnosed hereditary muscle diseases in the Estonian population. Since Estonian patients exhibit an estimated shorter haplotype length than Finnish patients, the FINmaj variant likely originated in Estonia before spreading to Finland.

Keywords

Tibial muscular dystrophy / AD TMD / neuromuscular disease / titinopathy / TTN / FINmaj variant

Cite this article

Download citation ▾
Siiri Sarv, Tiia Reimand, Eve Õiglane-Shlik, Sanna Puusepp, Sander Pajusalu, Ülle Murumets, Teemu Turku, Lisanna Põlluaas, Laura Mihkla, Sandra Ütt, Katrin Gross-Paju, Liis Väli, Tiina Kahre, Marco Savarese, Peter Hackman, Bjarne Udd, Katrin Õunap. Autosomal dominant tibial muscular dystrophy in Estonia. Journal of Translational Genetics and Genomics, 2025, 9(4): 368-80 DOI:10.20517/jtgg.2025.72

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hackman P,Haravuori H.Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin.Am J Hum Genet2002;71:492-500 PMCID:PMC379188

[2]

Udd B,Somer H.Muscular dystrophy with separate clinical phenotypes in a large family.Muscle Nerve1991;14:1050-8

[3]

Udd B,Halonen P.Tibial muscular dystrophy. Late adult-onset distal myopathy in 66 finnish patients.Arch Neurol1993;50:604-8

[4]

Haravuori H,Udd B.Assignment of the tibial muscular dystrophy locus to chromosome 2q31.Am J Hum Genet1998;62:620-6 PMCID:PMC1376946

[5]

Udd B,Somer H.Imaging methods reveal unexpected patchy lesions in late onset distal myopathy.Neuromuscul Disord1991;1:279-85

[6]

Bugiardini E,Shah S.The diagnostic value of MRI Pattern recognition in distal myopathies.Front Neurol2018;9:456 PMCID:PMC6028608

[7]

Udd B.Limb-girdle type muscular dystrophy in a large family with distal myopathy: homozygous manifestation of a dominant gene?.J Med Genet1992;29:383-9 PMCID:PMC1015987

[8]

Hayes LH,Donkervoort S.Taking on the Titin: muscle imaging as a diagnostic marker of biallelic TTN-related myopathy.J Neuromuscul Dis2024;11:1211-20

[9]

Gómez-Andrés D,Díaz-Manera J.Different lower limb muscle MRI patterns in autosomal dominant titinopathies.Eur J Neurol2025;32:e70348 PMCID:PMC12481456

[10]

Bang ML,Fornoff F.The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system.Circ Res2001;89:1065-72

[11]

Savarese M,Vihola A.Panorama of the distal myopathies.Acta Myol2020;39:245-65

[12]

Linke WA.Stretching the story of titin and muscle function.J Biomech2023;152:111553

[13]

Guo W,Esbona K.Titin diversity-alternative splicing gone wild.J Biomed Biotechnol2010;2010:753675 PMCID:PMC2843904

[14]

Hackman P,Sarparanta J.Truncating mutations in C-terminal titin may cause more severe tibial muscular dystrophy (TMD).Neuromuscul Disord2008;18:922-8

[15]

Evilä A,Sarparanta J.Atypical phenotypes in titinopathies explained by second titin mutations.Ann Neurol2014;75:230-40

[16]

Savarese M,Oates EC.Genotype-phenotype correlations in recessive titinopathies.Genet Med2020;22:2029-40

[17]

Lillback V,Sandholm N,Udd B.Long-term favorable prognosis in late onset dominant distal titinopathy: Tibial muscular dystrophy.Eur J Neurol2023;30:1080-8

[18]

Van den Bergh PY,Verellen C.Tibial muscular dystrophy in a Belgian family.Ann Neurol2003;54:248-51

[19]

Pollazzon M,Penttilä S.The first Italian family with tibial muscular dystrophy caused by a novel titin mutation.J Neurol2010;257:575-9

[20]

Evilä A,Vihola A.Targeted next-generation sequencing reveals novel TTN mutations causing recessive distal titinopathy.Mol Neurobiol2017;54:7212-23

[21]

Õunap K,Õiglane-Shlik E.TTN-related muscular dystrophies, LGMD, and TMD, in an estonian family caused by the finnish founder variant.Neurol Genet2024;10:e200199

[22]

Li H.Fast and accurate short read alignment with Burrows-Wheeler transform.Bioinformatics2009;25:1754-60 PMCID:PMC2705234

[23]

Wang K,Hakonarson H.ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data.Nucleic Acids Res2010;38:e164 PMCID:PMC2938201

[24]

Cingolani P,Coon M.Using drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift.Front Genet2012;3:35 PMCID:PMC3304048

[25]

McLaren W,Hunt SE.The ensembl variant effect predictor.Genome Biol2016;17:122 PMCID:PMC4893825

[26]

McKenna A,Banks E.The genome analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.Genome Res2010;20:1297-303 PMCID:PMC2928508

[27]

Krumm N,Ko A.Copy number variation detection and genotyping from exome sequence data.Genome Res2012;22:1525-32 PMCID:PMC3409265

[28]

Mercuri E,Allsop J,Pane M.Muscle MRI in inherited neuromuscular disorders: past, present, and future.J Magn Reson Imaging2007;25:433-40

[29]

Lehtonen J,Almusa H.Haplotype information of large neuromuscular disease genes provided by linked-read sequencing has a potential to increase diagnostic yield.Sci Rep2024;14:4306 PMCID:PMC10881483

[30]

Landrum MJ,Riley GR.ClinVar: public archive of relationships among sequence variation and human phenotype.Nucleic Acids Res2014;42:D980-5 PMCID:PMC3965032

[31]

Kopanos C,Kouris A.VarSome: the human genomic variant search engine.Bioinformatics2019;35:1978-80

[32]

Franklin by Genoox. The Future of Genomic Medicine. Available from: https://franklin.genoox.com/clinical-db/home/ [Last accessed on 26 Nov 2025]

[33]

Stenson PD,Ball EV.The human gene mutation database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies.Hum Genet2017;136:665-77 PMCID:PMC5429360

[34]

Karczewski KJ,Tiao G.The mutational constraint spectrum quantified from variation in 141,456 humans.Nature2020;581:434-43

[35]

FINmaj variant. chr2-178527195-178527209 | gnomAD v4.1.0 | gnomAD. Available from: https://gnomad.broadinstitute.org/region/2-178527195-178527209?dataset=gnomad_r4 [Last accessed on 26 Nov 2025]

[36]

Genetic Ancestry in gnomAD | gnomAD. Available from: https://gnomad.broadinstitute.org/help/ancestry [Last accessed on 26 Nov 2025]

[37]

Perrin A,Thèze C.Long-reads sequencing strategy to localize variants in TTN repeated domains.J Mol Diagn2022;24:719-26

[38]

Owusu R.Long-read sequencing improves diagnostic rate in neuromuscular disorders.Acta Myol2023;42:123-8 PMCID:PMC10883326

PDF

44

Accesses

0

Citation

Detail

Sections
Recommended

/