What can ATP content tell us about Barth syndrome muscle phenotypes?

Jeffrey J. Brault , Simon J. Conway

Journal of Translational Genetics and Genomics ›› 2025, Vol. 9 ›› Issue (1) : 1 -10.

PDF
Journal of Translational Genetics and Genomics ›› 2025, Vol. 9 ›› Issue (1) :1 -10. DOI: 10.20517/jtgg.2024.83
review-article

What can ATP content tell us about Barth syndrome muscle phenotypes?

Author information +
History +
PDF

Abstract

Adenosine triphosphate (ATP) is the energy currency within all living cells and is involved in many vital biochemical reactions, including cell viability, metabolic status, cell death, intracellular signaling, DNA and RNA synthesis, purinergic signaling, synaptic signaling, active transport, and muscle contraction. Consequently, altered ATP production is frequently viewed as a contributor to both disease pathogenesis and subsequent progression of organ failure. Barth syndrome (BTHS) is an X-linked mitochondrial disease characterized by fatigue, skeletal muscle weakness, cardiomyopathy, neutropenia, and growth delay due to inherited TAFAZZIN enzyme mutations. BTHS is widely hypothesized in the literature to be a model of defective mitochondrial ATP production leading to energy deficits. Prior patient data have linked both impaired ATP production and reduced phosphocreatine to ATP ratios (PCr/ATP) in BTHS children and adult hearts and muscles, suggesting a primary role for perturbed energetics. Moreover, although only limited direct measurements of ATP content and ADP/ATP ratio (an indicator of the energy available from ATP hydrolysis) have so far been carried out, analysis of divergent BTHS animal models, cultured cell types, and diverse organs has failed to uncover a unifying understanding of the molecular mechanisms linking TAFAZZIN deficiency to perturbed muscle energetics. This review mainly focuses on the energetics of striated muscle in BTHS mitochondriopathy.

Keywords

Barth syndrome / TAFAZZIN / cardiolipin / striated muscle / mitochondria / adenosine triphosphate / energetics

Cite this article

Download citation ▾
Jeffrey J. Brault, Simon J. Conway. What can ATP content tell us about Barth syndrome muscle phenotypes?. Journal of Translational Genetics and Genomics, 2025, 9(1): 1-10 DOI:10.20517/jtgg.2024.83

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BioneS,MaestriniE,BolhuisPA.A novel X-linked gene, G4.5. is responsible for Barth syndrome.Nat Genet1996;12:385-9

[2]

NeuwaldAF.Barth syndrome may be due to an acyltransferase deficiency.Curr Biol1997;7:R465-6

[3]

BarthPG,BerdenJA.An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes.J Neurol Sci1983;62:327-55

[4]

BisslerJJ,GöringHH.Infantile dilated X-linked cardiomyopathy, G4.5 mutations, altered lipids, and ultrastructural malformations of mitochondria in heart, liver, and skeletal muscle.Lab Invest2002;82:335-44

[5]

RobertsAE,StewardCG.The Barth syndrome registry: distinguishing disease characteristics and growth data from a longitudinal study.Am J Med Genet A2012;158A:2726-32

[6]

GarlidAO,KimJ,Guevara-GonzalezV.TAZ encodes tafazzin, a transacylase essential for cardiolipin formation and central to the etiology of Barth syndrome.Gene2020;726:144148 PMCID:PMC7646589

[7]

TaylorC,PierreG.Clinical presentation and natural history of Barth syndrome: an overview.J Inherit Metab Dis2022;45:7-16

[8]

BashirA,ReedsDN.Impaired cardiac and skeletal muscle bioenergetics in children, adolescents, and young adults with Barth syndrome.Physiol Rep2017;5:e13130 PMCID:PMC5309577

[9]

SpencerCT,BryantRM.Impaired cardiac reserve and severely diminished skeletal muscle O2 utilization mediate exercise intolerance in Barth syndrome.Am J Physiol Heart Circ Physiol2011;301:H2122-9

[10]

MazzoccoMM,KellyRI.Barth syndrome is associated with a cognitive phenotype.J Dev Behav Pediatr2007;28:22-30 PMCID:PMC2813702

[11]

CadeWT,PetersonLR.Blunted fat oxidation upon submaximal exercise is partially compensated by enhanced glucose metabolism in children, adolescents, and young adults with Barth syndrome.J Inherit Metab Dis2019;42:480-93 PMCID:PMC6483838

[12]

KennesonA,LontokE.The diagnostic odyssey, clinical burden, and natural history of Barth syndrome: an analysis of patient registry data.J Transl Genet Genom2024;8:285-98

[13]

ChuXY,TongXY,ZhangHY.The legend of ATP: from origin of life to precision medicine.Metabolites2022;12:461 PMCID:PMC9148104

[14]

WisemanRW,BeckTW.Creatine kinase equilibration and ΔG(ATP) over an extended range of physiological conditions: implications for cellular energetics, signaling, and muscle performance.Int J Mol Sci2023;24:13244 PMCID:PMC10487889

[15]

SchmidtCA,NeuferPD.From OCR and ECAR to energy: perspectives on the design and interpretation of bioenergetics studies.J Biol Chem2021;297:101140 PMCID:PMC8479256

[16]

KushmerickMJ,WisemanRW.Mammalian skeletal muscle fibers distinguished by contents of phosphocreatine, ATP, and Pi.Proc Natl Acad Sci USA1992;89:7521-5 PMCID:PMC49742

[17]

HafenPS,MatiasC,BraultJJ.Skeletal muscle contraction kinetics and AMPK responses are modulated by the adenine nucleotide degrading enzyme AMPD1.J Appl Physiol2022;133:1055-66 PMCID:PMC9602816

[18]

BraultJJ,DentelJN.Selective inhibition of ATPase activity during contraction alters the activation of p38 MAP kinase isoforms in skeletal muscle.J Cell Biochem2013;114:1445-55 PMCID:PMC3806227

[19]

HancockCR,TerjungRL.Protecting the cellular energy state during contractions: role of AMP deaminase.J Physiol Pharmacol2006;57 Suppl 10:17-29.

[20]

AmoreseAJ,TarpeyMD.Hypoxia resistance is an inherent phenotype of the mouse flexor digitorum brevis skeletal muscle.Function2023;4:zqad012 PMCID:PMC10278979

[21]

GreinerJV.Intracellular ATP concentration and implication for cellular evolution.Biology2021;10:1166 PMCID:PMC8615055

[22]

DavisPR,VerhoevenNA.Increased AMP deaminase activity decreases ATP content and slows protein degradation in cultured skeletal muscle.Metabolism2020;108:154257 PMCID:PMC7319876

[23]

MillerSG,LawAS.AMP deamination is sufficient to replicate an atrophy-like metabolic phenotype in skeletal muscle.Metabolism2021;123:154864 PMCID:PMC8453098

[24]

HancockEJ,AngJ.Metabolic buffer analysis reveals the simultaneous, independent control of ATP and adenylate energy ratios.J R Soc Interface2021;18:20200976 PMCID:PMC8086841

[25]

RauckhorstAJ,PapeDJ,ScerboDA.Mouse tissue harvest-induced hypoxia rapidly alters the in vivo metabolome, between-genotype metabolite level differences, and 13C-tracing enrichments.Mol Metab2022;66:101596 PMCID:PMC9589196

[26]

GoossensC,RaymondVA,TurcotteS.Impact of the delay in cryopreservation timing during biobanking procedures on human liver tissue metabolomics.PLoS One2024;19:e0304405 PMCID:PMC11164386

[27]

BraultJJ,TerjungRL.Phosphocreatine content of freeze-clamped muscle: influence of creatine kinase inhibition.J Appl Physiol2003;94:1751-6

[28]

HancockCR,WisemanRW,MeyerRA.31P-NMR observation of free ADP during fatiguing, repetitive contractions of murine skeletal muscle lacking AK1.Am J Physiol Cell Physiol2005;288:C1298-304

[29]

MarvinJS,KumarM.iATPSnFR2: a high-dynamic-range fluorescent sensor for monitoring intracellular ATP.Proc Natl Acad Sci USA2024;121:e2314604121 PMCID:PMC11126915

[30]

StanleyPE.Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme.Anal Biochem1969;29:381-92

[31]

YangNC,ChenYH.A convenient one-step extraction of cellular ATP using boiling water for the luciferin-luciferase assay of ATP.Anal Biochem2002;306:323-7

[32]

TullsonPC,TerjungRL.Adenine nucleotide degradation in slow-twitch red muscle.Am J Physiol1990;258:C258-65

[33]

LawAS,BraultJJ.Liquid chromatography method for simultaneous quantification of ATP and its degradation products compatible with both UV-Vis and mass spectrometry.J Chromatogr B Analyt Technol Biomed Life Sci2022;1206:123351 PMCID:PMC9479163

[34]

SchlameM.Biosynthesis, remodeling and turnover of mitochondrial cardiolipin.Biochim Biophys Acta Mol Cell Biol Lipids2017;1862:3-7 PMCID:PMC5125896

[35]

DuncanAL.Monolysocardiolipin (MLCL) interactions with mitochondrial membrane proteins.Biochem Soc Trans2020;48:993-1004 PMCID:PMC7329354

[36]

Gonzalez-FranquesaA,ChubanavaS.Mass-spectrometry-based proteomics reveals mitochondrial supercomplexome plasticity.Cell Rep2021;35:109180

[37]

ZhangM,DowhanW.Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane.J Biol Chem2002;277:43553-6

[38]

ZhangM,DowhanW.Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria.J Biol Chem2005;280:29403-8 PMCID:PMC4113954

[39]

ClaypoolSM,McCafferyJM,KoehlerCM.The cardiolipin transacylase, tafazzin, associates with two distinct respiratory components providing insight into Barth syndrome.Mol Biol Cell2008;19:5143-55 PMCID:PMC2592642

[40]

HochFL.Cardiolipins and biomembrane function.Biochim Biophys Acta1992;1113:71-133

[41]

AcehanD,HoutkooperRH.Cardiac and skeletal muscle defects in a mouse model of human Barth syndrome.J Biol Chem2011;286:899-908 PMCID:PMC3020775

[42]

SniderPL,SunZ.A Barth syndrome patient-derived D75H point mutation in TAFAZZIN drives progressive cardiomyopathy in mice.Int J Mol Sci2024;25:8201 PMCID:PMC11311365

[43]

SoustekMS,MahCS.Characterization of a transgenic short hairpin RNA-induced murine model of Tafazzin deficiency.Hum Gene Ther2011;22:865-71 PMCID:PMC3166794

[44]

Suzuki-HatanoS,RizzoSA.AAV-mediated TAZ gene replacement restores mitochondrial and cardioskeletal function in Barth syndrome.Hum Gene Ther2019;30:139-54 PMCID:PMC6383582

[45]

ProlaA,VandestienneA.Cardiolipin content controls mitochondrial coupling and energetic efficiency in muscle.Sci Adv2021;7:eabd6322 PMCID:PMC7775760

[46]

RussoS,RossiR,LobassoS.SS-31 treatment ameliorates cardiac mitochondrial morphology and defective mitophagy in a murine model of Barth syndrome.Sci Rep2024;14:13655 PMCID:PMC11176169

[47]

PowersC,StraussA.Diminished exercise capacity and mitochondrial bc1 complex deficiency in tafazzin-knockdown mice.Front Physiol2013;4:74 PMCID:PMC3627988

[48]

JohnsonJM,VerkerkeARP.Targeted overexpression of catalase to mitochondria does not prevent cardioskeletal myopathy in Barth syndrome.J Mol Cell Cardiol2018;121:94-102 PMCID:PMC6178222

[49]

LouW,LiY.Loss of tafazzin results in decreased myoblast differentiation in C2C12 cells: a myoblast model of Barth syndrome and cardiolipin deficiency.Biochim Biophys Acta Mol Cell Biol Lipids2018;1863:857-65 PMCID:PMC5976547

[50]

PetitPX,PenalviaL.Tafazzin mutation affecting cardiolipin leads to increased mitochondrial superoxide anions and mitophagy inhibition in Barth syndrome.Cells2020;9:2333 PMCID:PMC7589545

[51]

GoncalvesRLS,BarteltA,HotamışlıgilGS.Cardiolipin deficiency in Barth syndrome is not associated with increased superoxide/H2O2 production in heart and skeletal muscle mitochondria.FEBS Lett2021;595:415-32 PMCID:PMC7894513

[52]

ZhuS,ZhuM.Cardiolipin remodeling defects impair mitochondrial architecture and function in a murine model of Barth syndrome cardiomyopathy.Circ Heart Fail2021;14:e008289 PMCID:PMC8210459

[53]

ChowdhuryA,AichA.Metabolic switch from fatty acid oxidation to glycolysis in knock-in mouse model of Barth syndrome.EMBO Mol Med2023;15:e17399 PMCID:PMC10493589

[54]

PacakCA,KhadirF.One episode of low intensity aerobic exercise prior to systemic AAV9 administration augments transgene delivery to the heart and skeletal muscle.J Transl Med2023;21:748 PMCID:PMC10598899

[55]

LiangZ,SchmidtkeMW.Upregulation of the AMPK-FOXO1-PDK4 pathway is a primary mechanism of pyruvate dehydrogenase activity reduction in tafazzin-deficient cells.Sci Rep2024;14:11497 PMCID:PMC11106297

[56]

FerraraPJ,JohnsonJM.Weight loss increases skeletal muscle mitochondrial energy efficiency in obese mice.Life Metab2023;2:load014 PMCID:PMC10195096

[57]

DudekJ,ChowdhuryA.Cardiac-specific succinate dehydrogenase deficiency in Barth syndrome.EMBO Mol Med2016;8:139-54 PMCID:PMC4734842

[58]

SoustekMS,FalkDJ,LewinAS.Endurance training ameliorates complex 3 deficiency in a mouse model of Barth syndrome.J Inherit Metab Dis2015;38:915-22

[59]

LiuX,GuoX.Increased reactive oxygen species-mediated Ca2+/calmodulin-dependent protein kinase II activation contributes to calcium handling abnormalities and impaired contraction in Barth syndrome.Circulation2021;143:1894-911 PMCID:PMC8691127

[60]

HeQ,RenJ.Mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes.Oxid Med Cell Longev2014;2014:654198 PMCID:PMC4160652

[61]

GreenwellAA,UssherJR.Myocardial disturbances of intermediary metabolism in Barth syndrome.Front Cardiovasc Med2022;9:981972 PMCID:PMC9399503

[62]

MilonL,ChiadmiM.The human nm23-H4 gene product is a mitochondrial nucleoside diphosphate kinase.J Biol Chem2000;275:14264-72

[63]

Tokarska-SchlattnerM,MunierA.The nucleoside diphosphate kinase D (NM23-H4) binds the inner mitochondrial membrane with high affinity to cardiolipin and couples nucleotide transfer with respiration.J Biol Chem2008;283:26198-207 PMCID:PMC3258864

[64]

MeyerRA,KushmerickMJ.A simple analysis of the “phosphocreatine shuttle”.Am J Physiol1984;246:C365-77

[65]

SchlattnerU,VernouxN.C-terminal lysines determine phospholipid interaction of sarcomeric mitochondrial creatine kinase.J Biol Chem2004;279:24334-42

[66]

SchlattnerU,RamirezS.Dual function of mitochondrial Nm23-H4 protein in phosphotransfer and intermembrane lipid transfer: a cardiolipin-dependent switch.J Biol Chem2013;288:111-21 PMCID:PMC3537004

[67]

SchlattnerU,RousseauD.Mitochondrial cardiolipin/phospholipid trafficking: the role of membrane contact site complexes and lipid transfer proteins.Chem Phys Lipids2014;179:32-41

[68]

GonzalvezF,BoutantM.Barth syndrome: cellular compensation of mitochondrial dysfunction and apoptosis inhibition due to changes in cardiolipin remodeling linked to tafazzin (TAZ) gene mutation.Biochim Biophys Acta2013;1832:1194-206

[69]

AryalB.Deficiency in cardiolipin reduces doxorubicin-induced oxidative stress and mitochondrial damage in human B-lymphocytes.PLoS One2016;11:e0158376 PMCID:PMC4951097

[70]

WangG,YangL.Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies.Nat Med2014;20:616-23

[71]

HeQ.Tafazzin knockdown causes hypertrophy of neonatal ventricular myocytes.Am J Physiol Heart Circ Physiol2010;299:H210-6

[72]

HeQ,HarrisN.Tafazzin knockdown interrupts cell cycle progression in cultured neonatal ventricular fibroblasts.Am J Physiol Heart Circ Physiol2013;305:H1332-43

[73]

Suzuki-HatanoS,RamanathanM.Increased mtDNA abundance and improved function in human Barth syndrome patient fibroblasts following AAV-TAZ gene delivery.Int J Mol Sci2019;20:3416 PMCID:PMC6678701

[74]

GürtlerS,OttoO.Tafazzin-dependent cardiolipin composition in C6 glioma cells correlates with changes in mitochondrial and cellular functions, and cellular proliferation.Biochim Biophys Acta Mol Cell Biol Lipids2019;1864:452-65

[75]

RuaAJ,ClaypoolSM,AlexandrescuAT.Perturbations in mitochondrial metabolism associated with defective cardiolipin biosynthesis: an in-organello real-time NMR study.J Biol Chem2024;300:107746 PMCID:PMC11470594

[76]

HuangY,MadalaSK.Cardiac metabolic pathways affected in the mouse model of Barth syndrome.PLoS One2015;10:e0128561 PMCID:PMC4451073

[77]

WangS,XuY.AAV gene therapy prevents and reverses heart failure in a murine knockout model of Barth syndrome.Circ Res2020;126:1024-39 PMCID:PMC7233109

[78]

SniderPL,MatiasC,BraultJJ.The loss of tafazzin Transacetylase activity is sufficient to drive testicular infertility.J Dev Biol2024;12:32 PMCID:PMC11677720

[79]

ChenZ,WangH.PTPMT1 is required for embryonic cardiac cardiolipin biosynthesis to regulate mitochondrial morphogenesis and heart development.Circulation2021;144:403-6 PMCID:PMC8340985

[80]

ClarkeSL,GonzalezIL.Barth syndrome.Orphanet J Rare Dis2013;8:23 PMCID:PMC3583704

[81]

CadeWT,BohnertKL.Myocardial glucose and fatty acid metabolism is altered and associated with lower cardiac function in young adults with Barth syndrome.J Nucl Cardiol2021;28:1649-59 PMCID:PMC7205570

[82]

ReidThompson W,ManuelR.A phase 2/3 randomized clinical trial followed by an open-label extension to evaluate the effectiveness of elamipretide in Barth syndrome, a genetic disorder of mitochondrial cardiolipin metabolism.Genet Med2021;23:471-8 PMCID:PMC7935714

[83]

RoshanravanB,AliAS.In vivo mitochondrial ATP production is improved in older adult skeletal muscle after a single dose of elamipretide in a randomized trial.PLoS One2021;16:e0253849 PMCID:PMC8282018

[84]

KaraaA,GoldsteinA,WeaverWD.Randomized dose-escalation trial of elamipretide in adults with primary mitochondrial myopathy.Neurology2018;90:e1212-21 PMCID:PMC5890606

[85]

VermaM,LizamaBN.iPSC-derived neurons from patients with POLG mutations exhibit decreased mitochondrial content and dendrite simplification.Am J Pathol2023;193:201-12 PMCID:PMC9976192

[86]

LöfbergM,NäveriH.ATP, phosphocreatine and lactate in exercising muscle in mitochondrial disease and McArdle’s disease.Neuromuscul Disord2001;11:370-5

[87]

LancasterMS,LawAS.Sucla2 knock-out in skeletal muscle yields mouse model of mitochondrial myopathy with muscle type-specific phenotypes.J Cachexia Sarcopenia Muscle2024;15:2729-42 PMCID:PMC11634519

[88]

GajewskiCD,SchonEA.New insights into the bioenergetics of mitochondrial disorders using intracellular ATP reporters.Mol Biol Cell2003;14:3628-35 PMCID:PMC196555

AI Summary AI Mindmap
PDF

28

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/