Genetics in the diagnosis and treatment of cardiovascular diseases
Kevin Bliden , Sahib Singh , Roni Shanoada , Isha Kalia , Udaya Tantry , Alyssa Zimmerman , Aravind Dilli Babu , Lekshminarayan Raghavakurup , Taylor Stude , Damian Sidorski , Paul Gurbel
Journal of Translational Genetics and Genomics ›› 2024, Vol. 8 ›› Issue (2) : 186 -206.
Genetics in the diagnosis and treatment of cardiovascular diseases
Cardiovascular diseases (CVDs) remain one of the leading causes of morbidity and mortality worldwide, with genetics being a major risk factor. Genetic cardiovascular disease can occur either because of single variant (Mendelian) or polygenic influences and has been linked to inherited cardiovascular conditions (ICC) such as arrhythmias, cardiomyopathies, dyslipidemias, and aortopathies which are significant factors leading to sudden cardiac death in young adults. Timely screening, diagnosis, and management of ICC can not only provide life-saving treatment to a patient, but also identify at-risk family members. The field of pharmacogenomics (PGx) helped to understand the variable action of medications such as clopidogrel, aspirin, warfarin, and statin according to genotype. Newer technologies such as multi-omics can combine data from multiple sources such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiome. These advancements can contribute to the development of polygenic prediction scores and precision medicine tailored to individual genotypes. Substantial strides have been made in genetic-based therapeutics, gene editing technologies, and drug delivery systems, which have significantly expanded treatment options for patients with acquired or inherited CVDs. Although variable, the country- and society-specific guidelines on genetic testing for ICC and PGx and treatment are being continuously updated to keep up with ongoing research in the field. Along with appropriate knowledge, other factors including cost and availability of genetic testing play a vital role in the usage by both physicians and patients. With the advent of newer genetic testing for CVDs, a key factor is the availability of genetic counselors (GCs) who are specifically trained in cardiovascular genomics. The current review provides a concise summary of the major influences of genetics in the diagnosis and treatment of CVDs.
Cardiovascular genetics / pharmacogenomics / inherited cardiovascular diseases / genetic counseling
| [1] |
World Health Organization. Cardiovascular diseases (CVDs) Fact sheet. Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) [Last accessed on 12 Apr 2024] |
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
Berg JM, van den Broek WWA. Another step toward CYP2C19 genotype-guided therapy in treatment with dual antiplatelet therapy.JACC Cardiovasc Interv2023;16:826-8 |
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
|
| [135] |
|
| [136] |
|
| [137] |
|
| [138] |
|
| [139] |
Genetic testing for cardiac disease. Available from: https://www.uhcprovider.com/content/dam/provider/docs/public/policies/oxford/gene-expression-tests-cardiac-conditions-ohp.pdf [Last accessed on 12 Apr 2024] |
| [140] |
Genetic testing for cardiovascular disease. Available from: https://www.cms.gov/medicare-coverage-database/view/lcd.aspx?lcdId=39084&ver=5 [Last accessed on 12 Apr 2024] |
| [141] |
GeneDx. Genetic testing for cardiovascular disease. Available from: https://www.cms.gov/medicare-coverage-database/view/lcd.aspx?lcdId=39084&ver=5#:~:text=However%2C%20Medicare%20does%20not%20cover,diagnostic%20result%20in%20most%20circumstances [Last accessed on 15 Apr 2024] |
| [142] |
|
| [143] |
|
| [144] |
Table of pharmacogenetic associations. Available from: https://www.fda.gov/medical-devices/precision-medicine/table-pharmacogenetic-associations [Last accessed on 12 Apr 2024] |
| [145] |
|
| [146] |
|
| [147] |
|
| [148] |
|
| [149] |
MolDX: pharmacogenomics testing. Available from: https://www.cms.gov/medicare-coverage-database/view/lcd.aspx?LCDId=38294&ver=16 [Last accessed on 12 Apr 2024] |
| [150] |
|
| [151] |
|
| [152] |
|
| [153] |
|
| [154] |
|
| [155] |
Wong EK, Bartels K, Hathaway J, et al. Perceptions of genetic variant reclassification in patients with inherited cardiac disease.Eur J Hum Genet2019;27:1134-42 PMCID:PMC6777462 |
| [156] |
|
| [157] |
|
| [158] |
|
| [159] |
|
| [160] |
Abdallaoui OEA, Tornyos D, Lukács R, Szabó D, Komócsi A. Individualized or uniform de-escalation strategies for antiplatelet therapy in acute coronary syndrome: a review of clinical trials with platelet function testing and genetic testing-based protocols.Int J Mol Sci2023;24:9071 PMCID:PMC10219318 |
| [161] |
|
| [162] |
|
| [163] |
|
| [164] |
|
| [165] |
|
| [166] |
|
| [167] |
|
| [168] |
|
| [169] |
|
| [170] |
|
| [171] |
|
| [172] |
|
| [173] |
|
| [174] |
|
| [175] |
|
| [176] |
World Medical Association Inc. Declaration of Helsinki. Ethical principles for medical research involving human subjects.J Indian Med Assoc2009;107:403-5 |
| [177] |
|
| [178] |
|
| [179] |
|
| [180] |
Beig Goharrizi MA, Ghodsi S, Memarjafari MR. Implications of CRISPR-Cas9 genome editing methods in atherosclerotic cardiovascular diseases.Curr Probl Cardiol2023;48:101603 |
| [181] |
|
| [182] |
|
| [183] |
|
| [184] |
|
| [185] |
|
| [186] |
|
| [187] |
|
| [188] |
|
| [189] |
|
| [190] |
|
| [191] |
|
| [192] |
|
| [193] |
|
| [194] |
|
| [195] |
|
| [196] |
|
| [197] |
|
| [198] |
|
| [199] |
|
| [200] |
|
/
| 〈 |
|
〉 |