Molecular basis of neurocognitive dysfunction and psychosis in Alpha-Mannosidosis

Mollie R. Dewsbury , Iain P. Hargreaves , Heather M. Morgan , Karolina M. Stepien

Journal of Translational Genetics and Genomics ›› 2024, Vol. 8 ›› Issue (2) : 85 -101.

PDF
Journal of Translational Genetics and Genomics ›› 2024, Vol. 8 ›› Issue (2) :85 -101. DOI: 10.20517/jtgg.2023.58
review-article

Molecular basis of neurocognitive dysfunction and psychosis in Alpha-Mannosidosis

Author information +
History +
PDF

Abstract

A significant portion of patients who are afflicted with lysosomal storage diseases (LSDs) encounter neurological manifestations, including cognitive issues and developmental delay, seizures, psychiatric issues, and an overall neurodegenerative decline. In order to enhance the development of effective therapies for these symptoms, it is imperative that we allude to the neuropathophysiology that underlies these manifestations. These distinct neurological and developmental features are particularly evident in patients with Alpha-Mannosidosis (AM), a type of LSD. However, there is limited published information regarding the mechanisms and pathophysiology of these presentations in patients with this condition. Although the precise impact of lysosomal storage on the biogenesis and functioning of neuronal cells has not been clearly defined, recent studies have placed emphasis on the significance of synaptic defects influencing this dysfunction. These defects encompass changes in synaptic spines, proteins, and vesicles, as well as postsynaptic densities that potentially precipitate functional disruptions in synaptic transmission and neurodegeneration. Ultimately, this cascade is thought to result in extensive neuronal loss and, consequently, the onset of cognitive manifestations. Uncovering the effects on synaptic components in LSDs with neurological symptoms like AM will enable a better understanding of disease progression. It will also allow us to identify critical targets for therapeutic intervention and the determination of optimal time frames for targeted treatments, as well as the effects of these treatments on mitochondrial function. The available therapeutic modalities in AM are not a definitive cure for affected patients, but rather an attempt to reduce the symptomatic severity in their presentation, while aiming to regress/slow down disease progression. This review will aim to discuss and rationalize the current treatment approaches in place for AM patients in relation to their effects on the improvement of neurocognitive symptoms in affected AM individuals.

Keywords

Lysosomal storage disorders / Alpha-Mannosidosis / neurocognitive dysfunction / secondary mitochondrial dysfunction / oxidative stress / synaptic defects / psychosis / neurological complications

Cite this article

Download citation ▾
Mollie R. Dewsbury, Iain P. Hargreaves, Heather M. Morgan, Karolina M. Stepien. Molecular basis of neurocognitive dysfunction and psychosis in Alpha-Mannosidosis. Journal of Translational Genetics and Genomics, 2024, 8(2): 85-101 DOI:10.20517/jtgg.2023.58

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

FullerM,HopwoodJJ. Epidemiology of lysosomal storage diseases: an overview. In: Mehta A, Beck M, Sunder-Plassmann G, editors. Fabry disease: perspectives from 5 years of FOS. Oxford: Oxford PharmaGenesis; 2006. Chapter 2. Available from: https://www.ncbi.nlm.nih.gov/books/NBK11603/ [Last accessed on 14 Mar 2024]

[2]

ShethJ.Treatment for lysosomal storage disorders.Curr Pharm Des2020;26:5110-8

[3]

PlattFM,vander Spoel AC.The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction.J Cell Biol2012;199:723-34 PMCID:PMC3514785

[4]

MeiklePJ,ClagueAE.Prevalence of lysosomal storage disorders.JAMA1999;281:249-54

[5]

MalmD.Alpha-mannosidosis.Orphanet J Rare Dis2008;3:21 PMCID:PMC2515294

[6]

RiiseStensland HM,KuokkanenE.amamutdb.no: a relational database for MAN2B1 allelic variants that compiles genotypes, clinical phenotypes, and biochemical and structural data of mutant MAN2B1 in α-mannosidosis.Hum Mutat2015;36:581-6

[7]

StepienKM,TurtonN.Mechanisms of mitochondrial dysfunction in lysosomal storage disorders: a review.J Clin Med2020;9:2596 PMCID:PMC7463786

[8]

BorgwardtL,OlsenKJ.Alpha-mannosidosis: correlation between phenotype, genotype and mutant MAN2B1 subcellular localisation.Orphanet J Rare Dis2015;10:70 PMCID:PMC4465300

[9]

StepienKM,DonaldA,ChurchH.Secondary mitochondrial dysfunction as a cause of neurodegenerative dysfunction in lysosomal storage diseases and an overview of potential therapies.Int J Mol Sci2022;23:10573 PMCID:PMC9503973

[10]

GuffonN,BorgwardtL.Recognition of alpha-mannosidosis in paediatric and adult patients: presentation of a diagnostic algorithm from an international working group.Mol Genet Metab2019;126:470-4

[11]

JakubczykK,KałduńskaJ,KochmanJ.Reactive oxygen species - sources, functions, oxidative damage.Pol Merkur Lekarski2020;48:124-7

[12]

TanEY,JonesSA.Hematopoietic stem cell transplantation in inborn errors of metabolism.Front Pediatr2019;7:433 PMCID:PMC6824291

[13]

AdamJ,LloydS,HendrikszCJ.Disease progression of alpha-mannosidosis and impact on patients and carers - a UK natural history survey.Mol Genet Metab Rep2019;20:100480 PMCID:PMC6557729

[14]

EdelmannMJ.CNS-targeting therapies for lysosomal storage diseases: current advances and challenges.Front Mol Biosci2020;7:559804 PMCID:PMC7693645

[15]

DietemannJL,TranchantC.MR findings in mannosidosis.Neuroradiology1990;32:485-7

[16]

LipińskiP,Iwanicka-PronickaK,PokoraP.Long-term outcome of patients with alpha-mannosidosis - a single center study.Mol Genet Metab Rep2022;30:100826 PMCID:PMC8856903

[17]

BorgwardtL,OlsenKJ,DaliCI.Cognitive profile and activities of daily living: 35 patients with alpha-mannosidosis.J Inherit Metab Dis2015;38:1119-27

[18]

HafizS. Ataxia. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK562284/ [Last accessed on 13 Mar 2024].

[19]

KawaiH,NishidaY.Skeletal muscle pathology of mannosidosis in two siblings with spastic paraplegia.Acta Neuropathol1985;68:201-4

[20]

CarpenterS.Lysosomal storage in human skeletal muscle.Hum Pathol1986;17:683-703

[21]

AutioS,HeleniusM.The clinical course of mannosidosis.Ann Clin Res1982;14:93-7

[22]

YunisJJ,SanfilippoSJ,FoniI.Clinical manifestations of mannosidosis - a longitudinal study.Am J Med1976;61:841-8

[23]

BachG,LaschEE.A new variant of mannosidosis with increased residual enzymatic activity and mild clinical manifestation.Pediatr Res1978;12:1010-5

[24]

CatheySS,SimensenR.Intellectual functioning in alpha-mannosidosis.JIMD Rep2019;50:44-9 PMCID:PMC6850974

[25]

SedelF,TurpinJC,SaudubrayJM.Psychiatric manifestations revealing inborn errors of metabolism in adolescents and adults.J Inherit Metab Dis2007;30:631-41

[26]

DanielsenER,ThomsenC.Cerebral magnetic resonance spectroscopy demonstrates long-term effect of bone marrow transplantation in α-mannosidosis. In: Zschocke J, Gibson KM, Brown G, Morava E, Peters V, editors. JIMD reports - volume 11. Berlin: Springer Berlin Heidelberg; 2013. pp. 49-52. PMCID:PMC3755547

[27]

GutschalkA,CantzM,RohrschneiderK.Adult alpha-mannosidosis: clinical progression in the absence of demyelination.Neurology2004;63:1744-6

[28]

MalmD,LinakerOM.Psychiatric symptoms in alpha-mannosidosis.J Intellect Disabil Res2005;49:865-71

[29]

AraJR,MarzoME.Neurological impairment in alpha-mannosidosis: a longitudinal clinical and MRI study of a brother and sister.Childs Nerv Syst1999;15:369-71

[30]

MajovskaJ,PaulsonA.White matter alteration and cerebellar atrophy are hallmarks of brain MRI in alpha-mannosidosis.Mol Genet Metab2021;132:189-97

[31]

MalaquiasMJ,OliveiraJ,CaseiroC.Alpha-mannosidosis: a novel cause of bilateral thalami and dentate nuclei hyperintensity.Can J Neurol Sci2022;49:704-5

[32]

BorgwardtL,ThomsenC.Alpha-mannosidosis: characterization of CNS pathology and correlation between CNS pathology and cognitive function.Clin Genet2016;89:489-94

[33]

ZalfaC,D’AvanzoF.Glial degeneration with oxidative damage drives neuronal demise in MPSII disease.Cell Death Dis2016;7:e2331. PMCID:PMC5108318

[34]

VianaGM,PlattFMK,PshezhetskyAV.Brain pathology in mucopolysaccharidoses (MPS) patients with neurological forms.J Clin Med2020;9:396 PMCID:PMC7073982

[35]

Heon-RobertsR,PshezhetskyAV.Molecular bases of neurodegeneration and cognitive decline, the major burden of Sanfilippo disease.J Clin Med2020;9:344 PMCID:PMC7074161

[36]

PereiraVG,MichelettiC.Mutational and oxidative stress analysis in patients with mucopolysaccharidosis type I undergoing enzyme replacement therapy.Clin Chim Acta2008;387:75-9

[37]

DonidaB,BianciniGB.Oxidative stress and inflammation in mucopolysaccharidosis type IVA patients treated with enzyme replacement therapy.Biochim Biophys Acta2015;1852:1012-9

[38]

AyodeleO,SetayeshgarS,YeeKS.Clinical characteristics and healthcare resource utilization for patients with mucopolysaccharidosis II (MPS II) in the United States: a retrospective chart review.J Health Econ Outcomes Res2022;9:117-27 PMCID:PMC9098230

[39]

FilipponL,BianciniGB.Oxidative stress in patients with mucopolysaccharidosis type II before and during enzyme replacement therapy.Mol Genet Metab2011;103:121-7

[40]

BhallaA,FangM.Characterization of fluid biomarkers reveals lysosome dysfunction and neurodegeneration in neuronopathic MPS II patients.Int J Mol Sci2020;21:5188 PMCID:PMC7432645

[41]

AzambujaAS,GonzalezEA.Evidence for inflammasome activation in the brain of mucopolysaccharidosis type II mice.Metab Brain Dis2020;35:1231-6

[42]

ManzoliR. Identification and characterization of signaling and axonal migration defects in the MPS II zebrafish model. Res Padua Arch 2023;8. Available from: https://hdl.handle.net/11577/3478864 [Last accessed on 14 Mar 2024]

[43]

CorrêaT,Santos-RebouçasCB.Convergent molecular mechanisms underlying cognitive impairment in mucopolysaccharidosis type II.Metab Brain Dis2022;37:2089-102

[44]

PshezhetskyAV.Crosstalk between 2 organelles: lysosomal storage of heparin sulfate causes mitochondrial defects and neuronal death in mucopolysaccharidosis III type c.Rare Dis2015;3:e1049793 PMCID:PMC4588229

[45]

MonteroR,SalgadoMC.Plasma coenzyme Q10 status is impaired in selected genetic conditions.Sci Rep2019;9:793 PMCID:PMC6349877

[46]

KongW,ZouL,WangJ.Mucopolysaccharidosis III in Mainland China: natural history, clinical and molecular characteristics of 34 patients.J Pediatr Endocrinol Metab2020;33:793-802

[47]

GerkenE,RattanL,BarthelsonK.Zebrafish models of Mucopolysaccharidosis types IIIA, B, & C show hyperactivity and changes in oligodendrocyte state.bioRxiv2023;8.

[48]

VillaniGR,MusellaA,DiNapoli D.Mucopolysaccharidosis IIIB: oxidative damage and cytotoxic cell involvement in the neuronal pathogenesis.Brain Res2009;1279:99-108

[49]

VitryS,HocquemillerM.Storage vesicles in neurons are related to Golgi complex alterations in mucopolysaccharidosis IIIB.Am J Pathol2010;177:2984-99 PMCID:PMC2993280

[50]

EgelandMT,AsmarMM.Central nervous system pathology in preclinical MPS IIIB dogs reveals progressive changes in clinically relevant brain regions.Sci Rep2020;10:20365 PMCID:PMC7684310

[51]

HarmTA,NenningerAS,EllinwoodNM.Temporospatial development of neuropathologic findings in a canine model of mucopolysaccharidosis IIIB.Vet Pathol2021;58:205-22 PMCID:PMC8369529

[52]

ParáC,BrunoL.Early defects in mucopolysaccharidosis type IIIC disrupt excitatory synaptic transmission.JCI Insight2021;6:e142073 PMCID:PMC8410035

[53]

MartinsC,DridiL.Neuroinflammation, mitochondrial defects and neurodegeneration in mucopolysaccharidosis III type C mouse model.Brain2015;138:336-55 PMCID:PMC4306821

[54]

BorgesMS,VagniniL,FonsecaJH.Lysosomal acid lipase deficiency across ages: unraveling the clinical spectrum of an under-recognized genetic disorder.Mol Genet Metab2020;129:S32-3

[55]

Pablo-Latorre R, Saide A, Polishhuck EV, Nusco E, Fraldi A, Ballabio A. Impaired parkin-mediated mitochondrial targeting to autophagosomes differentially contributes to tissue pathology in lysosomal storage diseases.Hum Mol Genet2012;21:1770-81. PMCID:PMC3313794

[56]

SettembreC,JahreissL.A block of autophagy in lysosomal storage disorders.Hum Mol Genet2008;17:119-29

[57]

ZhongXZ,CaoQ,SchiffmannR.BK channel agonist represents a potential therapeutic approach for lysosomal storage diseases.Sci Rep2016;6:33684 PMCID:PMC5037385

[58]

GinzburgL.Defective calcium homeostasis in the cerebellum in a mouse model of Niemann-Pick A disease.J Neurochem2005;95:1619-28

[59]

PresseySN,WongAM,CooperJD.Early glial activation, synaptic changes and axonal pathology in the thalamocortical system of Niemann-Pick type C1 mice.Neurobiol Dis2012;45:1086-100 PMCID:PMC3657200

[60]

SarkarS,BuganimY.Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 disease.Cell Rep2013;5:1302-15 PMCID:PMC3957429

[61]

ShenD,LiX.Lipid storage disorders block lysosomal trafficking by inhibiting TRP channel and calcium release.Nat Commun2012;3:731-51 PMCID:PMC3347486

[62]

SunX,ParkWD.Niemann-Pick C variant detection by altered sphingolipid trafficking and correlation with mutations within a specific domain of NPC1.Am J Hum Genet2001;68:1361-72 PMCID:PMC1226123

[63]

Lloyd-EvansE.Lysosomal Ca2+ homeostasis: role in pathogenesis of lysosomal storage diseases.Cell Calcium2011;50:200-5

[64]

PotterGB.Neuroimmune mechanisms in Krabbe’s disease.J Neurosci Res2016;94:1341-8 PMCID:PMC5129482

[65]

FiorenzaMT,EricksonRP.The pathogenesis of lysosomal storage disorders: beyond the engorgement of lysosomes to abnormal development and neuroinflammation.Hum Mol Genet2018;27:R119-29

[66]

CougnouxA,FellmethM.Unique molecular signature in mucolipidosis type IV microglia.J Neuroinflamm2019;16:276 PMCID:PMC6935239

[67]

SchedinS,PentchevP,DallnerG.Peroxisomal impairment in Niemann-Pick type C disease.J Biol Chem1997;272:6245-51

[68]

KennedyBE,MailmanTM.Pre-symptomatic activation of antioxidant responses and alterations in glucose and pyruvate metabolism in Niemann-Pick type C1-deficient murine brain.PLoS ONE2013;8:e82685 PMCID:PMC3867386

[69]

OsellameLD,HargreavesIP.Mitochondria and quality control defects in amouse model of Gaucher disease-links to Parkinson’s disease.Cell Metab2013;17:941-53 PMCID:PMC3678026

[70]

DasguptaN,LiR.Neuronopathic Gaucher disease: dysregulated mRNAs and miRNAs in brain pathogenesis and effects of pharmacologic chaperone treatment in a mouse model.Hum Mol Genet2015;24:7031-48 PMCID:PMC4654057

[71]

XuYH,SunY.Multiple pathogenic proteins implicated in neuronopathic Gaucher disease mice.Hum Mol Genet2014;23:3943-57 PMCID:PMC4082362

[72]

TulloMG,CaramiaF.The spectrum of neurological and sensory abnormalities in Gaucher disease patients: a multidisciplinary study (SENOPRO).Int J Mol Sci2023;24:8844 PMCID:PMC10218502

[73]

KarthaRV,BrownR.Patients with Gaucher disease display systemic oxidative stress dependent on therapy status.Mol Genet Metab Rep2020;25:100667 PMCID:PMC7733024

[74]

ZhangZ,LinY.A multifaceted evaluation of microgliosis and differential cellular dysregulation of mammalian target of rapamycin signaling in neuronopathic Gaucher disease.Front Mol Neurosci2022;15:944883 PMCID:PMC9530712

[75]

YañezMJ,MarínT.c-Abl activates RIPK3 signaling in Gaucher disease.Biochim Biophys Acta Mol Basis Dis2021;1867:166089

[76]

ShimizuT,IzumiY.Direct activation of microglia by β-glucosylceramide causes phagocytosis of neurons that exacerbates Gaucher disease.Immunity2023;56:307-19.e8

[77]

SrikanthMP.Elevated Dkk1 mediates downregulation of the canonical Wnt pathway and lysosomal loss in an iPSC model of neuronopathic Gaucher disease.Biomolecules2020;10:1630 PMCID:PMC7761665

[78]

BadenP,RajiH.Glucocerebrosidase is imported into mitochondria and preserves complex I integrity and energy metabolism.Nat Commun2023;14:1930 PMCID:PMC10079970

[79]

TeixeiraCA,SousaVF.Early axonal loss accompanied by impaired endocytosis, abnormal axonal transport, and decreased microtubule stability occur in the model of Krabbe’s disease.Neurobiol Dis2014;66:92-103 PMCID:PMC4307018

[80]

SinghI,ContrerasMA.Peroxisomal dysfunction in inflammatory childhood white matter disorders: an unexpected contributor to neuropathology.J Child Neurol2009;24:1147-57 PMCID:PMC3077730

[81]

HaqE,GiriS,SinghAK.Dysfunction of peroxisomes in twitcher mice brain: a possible mechanism of psychosine-induced disease.Biochem Biophys Res Commun2006;343:229-38

[82]

VoccoliV,SignoreG,CecchiniM.Role of extracellular calcium and mitochondrial oxygen species in psychosine-induced oligodendrocyte cell death.Cell Death Dis2014;5:e1529 PMCID:PMC4260741

[83]

WuL,YangS.Krabbe disease associated with mitochondrial dysfunction in a chinese family.Front Neurol2021;12:750095 PMCID:PMC8717148

[84]

KreherC,WeinstockNI.Neuron-specific ablation of the Krabbe disease gene galactosylceramidase in mice results in neurodegeneration.PLoS Biol2022;20:e3001661 PMCID:PMC9255775

[85]

HattonC,KossDJ.International DLB Genetics ConsortiumPrion-like α-synuclein pathology in the brain of infants with Krabbe disease.Brain2022;145:1257-63

[86]

KarabelasAB.Altered patterns of evoked synaptic activity in cortical pyramidal neurons in feline ganglioside storage disease.Brain Res1985;339:329-36

[87]

Purpura DP, Highstein SM, Karabelas AB, Walkley SU. Intracellular recording and HRP-staining of cortical neurons in feline ganglioside storage disease.Brain Res1980;181:446-9

[88]

UtzJR,SchneiderJ,WhitleyCB.Biomarkers of central nervous system inflammation in infantile and juvenile gangliosidoses.Mol Genet Metab2015;114:274-80 PMCID:PMC4386860

[89]

SanoR,PattersonA.GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca2+-dependent mitochondrial apoptosis.Mol Cell2009;36:500-11 PMCID:PMC2782904

[90]

TakamuraA,KajimakiK.Enhanced autophagy and mitochondrial aberrations in murine G(M1)-gangliosidosis.Biochem Biophys Res Commun2008;367:616-22.

[91]

LiuS,HuangY.A GM1 gangliosidosis mutant mouse model exhibits activated microglia and disturbed autophagy.Exp Biol Med2021;246:1330-41 PMCID:PMC8371306

[92]

DemirSA,AteşN,SeyrantepeV.GM2 ganglioside accumulation causes neuroinflammation and behavioral alterations in a mouse model of early onset Tay-Sachs disease.J Neuroinflamm2020;17:277 PMCID:PMC7504627

[93]

GadothN.Neuropsychiatry in late onset Tay-Sachs disease. In: Costa LV, Oliveira S, editors. Communicating rare diseases and disorders in the digital age. Hershey: IGI Global; 2020. pp. 274-91.

[94]

MicsenyiMC,StephneyG.Neuropathology of the Mcoln1-/- knockout mouse model of mucolipidosis type IV.J Neuropathol Exp Neurol2009;68:125-35 PMCID:PMC4232971

[95]

Jezela-StanekA,StepienKM.Neuropathophysiology, genetic profile, and clinical manifestation of mucolipidosis IV-a review and case series.Int J Mol Sci2020;21:4564 PMCID:PMC7348969

[96]

MiskoA,KiselyovK,GrishchukY.Progress in elucidating pathophysiology of mucolipidosis IV.Neurosci Lett2021;755:135944 PMCID:PMC8253105

[97]

MepyansM,SosaJ.Early evidence of delayed oligodendrocyte maturation in the mouse model of mucolipidosis type IV.Dis Model Mech2020;13:dmm044230 PMCID:PMC7406328

[98]

PengW,KraincD.Mitochondria-lysosome contacts regulate mitochondrial Ca2+ dynamics via lysosomal TRPML1.Proc Natl Acad Sci USA2020;117:19266-75 PMCID:PMC7430993

[99]

NelsonMP,O’QuinnDB.Autophagy-lysosome pathway associated neuropathology and axonal degeneration in the brains of alpha-galactosidase A-deficient mice.Acta Neuropathol Commun2014;2:1-15 PMCID:PMC3933238

[100]

GrohJ,StadlerD,LutzMB.Sialoadhesin promotes neuroinflammation-related disease progression in two mouse models of CLN disease.Glia2016;64:792-809

[101]

Uusi-RauvaK,vonSchantz-Fant C,JalankoA.Induced pluripotent stem cells derived from a CLN5 patient manifest phenotypic characteristics of neuronal ceroid lipofuscinoses.Int J Mol Sci2017;18:955 PMCID:PMC5454868

[102]

KolikovaJ,SurinA,KhirougL.Deficient mitochondrial Ca2+ buffering in the Cln8mnd mouse model of neuronal ceroid lipofuscinosis.Cell Calcium2011;50:491-501

[103]

Dozières-PuyravelB,Elmaleh-BergèsM.Paediatric-onset neuronal ceroid lipofuscinosis: first symptoms and presentation at diagnosis.Dev Med Child Neurol2020;62:528-30

[104]

NaseriN,VelinovM.Autosomal dominant neuronal ceroid lipofuscinosis: Clinical features and molecular basis.Clin Genet2021;99:111-8 PMCID:PMC7899141

[105]

Lopez-FabuelI,BuondelmonteC.Aberrant upregulation of the glycolytic enzyme PFKFB3 in CLN7 neuronal ceroid lipofuscinosis.Nat Commun2022;13:536 PMCID:PMC8795187

[106]

PesaolaF,VenierAC,NoherI.The neuronal ceroid lipofuscinosis-related protein CLN8 regulates endo-lysosomal dynamics and dendritic morphology.Biol Cell2021;113:419-37

[107]

WangY,WangC.Lysosomal dysfunction, autophagic defects, and CLN5 accumulation underlie the pathogenesis of KCTD7-mutated neuronal ceroid lipofuscinoses.Autophagy2023;19:1876-8 PMCID:PMC10262767

[108]

HuangQ,LiLJ.Adult-onset neuronal ceroid lipofuscinosis with a novel DNAJC5 mutation exhibits aberrant protein palmitoylation.Front Aging Neurosci2022;14:829573 PMCID:PMC9031920

[109]

LimJA,KakhlonO,RabenN.Defects in calcium homeostasis and mitochondria can be reversed in Pompe disease.Autophagy2015;11:385-402 PMCID:PMC4502791

[110]

vanden Dorpel JJA,DremmenMHG.Is the brain involved in patients with late-onset Pompe disease?.J Inherit Metab Dis2022;45:493-501 PMCID:PMC9306606

[111]

NiemannS,SeidelG,ViereggeP.Neurology of adult alpha-mannosidosis.J Neurol Neurosurg Psychiatry1996;61:116-7 PMCID:PMC486477

[112]

ZoonsE,AbelingNG.Neurodegeneration with brain iron accumulation on MRI: an adult case of α-mannosidosis.JIMD Rep2012;4:99-102. PMCID:PMC3509898

[113]

BrantovaO,SladkovaJ.Ultrastructural and functional abnormalities of mitochondria in cultivated fibroblasts from α-mannosidosis patients.Biologia2009;64:394-401

[114]

Ghani S, Burney S, Ul Hussain H, Abdul Wahid M, Mumtaz H. Can velmanase alfa be the next widespread potential therapy for alpha-mannosidosis?.Int J Surg2023;109:2882-5 PMCID:PMC10498836

[115]

CeccariniMR,ConteC.Alpha-mannosidosis: therapeutic strategies.Int J Mol Sci2018;19:1500 PMCID:PMC5983820

[116]

WalkleySU,DobrenisK.Bone marrow transplantation corrects the enzyme defect in neurons of the central nervous system in a lysosomal storage disease.Proc Natl Acad Sci USA1994;91:2970-4 PMCID:PMC43496

[117]

GrewalSS,KrivitW.Effective treatment of alpha-mannosidosis by allogeneic hematopoietic stem cell transplantation.J Pediatr2004;144:569-73

[118]

MynarekM,AlbertMH.Allogeneic hematopoietic SCT for alpha-mannosidosis: an analysis of 17 patients.Bone Marrow Transplant2012;47:352-9

[119]

EscolarML,ProvenzaleJM.Transplantation of umbilical-cord blood in babies with infantile Krabbe's disease.N Engl J Med2005;352:2069-81

[120]

BorgwardtL,AmraouiY.Health related quality of life, disability, and pain in alpha mannosidosis: long-term data of enzyme replacement therapy with velmanase alfa (human recombinant alpha mannosidase).J Inborn Errors Metab Screen2018;6:232640981879685

[121]

PhillipsD,Tylki-SzymanskaA.Use of the Bruininks-Oseretsky test of motor proficiency (BOT-2) to assess efficacy of velmanase alfa as enzyme therapy for alpha-mannosidosis.Mol Genet Metab Rep2020;23:100586 PMCID:PMC7149402

[122]

LundAM,CattaneoF.Comprehensive long-term efficacy and safety of recombinant human alpha-mannosidase (velmanase alfa) treatment in patients with alpha-mannosidosis.J Inherit Metab Dis2018;41:1225-33 PMCID:PMC6326957

[123]

HargreavesIP.Coenzyme Q10 as a therapy for mitochondrial disease.Int J Biochem Cell Biol2014;49:105-11

[124]

da Silva CC, Cerqueira FM, Barbosa LF, Medeiros MH, Kowaltowski AJ. Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity.Aging Cell2008;7:552-60

[125]

AnglinRE,TarnopolskyMA,RosebushPI.The psychiatric manifestations of mitochondrial disorders: a case and review of the literature.J Clin Psychiatry2012;73:506-12

[126]

MattsonMP,ChengA.Mitochondria in neuroplasticity and neurological disorders.Neuron2008;60:748-66 PMCID:PMC2692277

AI Summary AI Mindmap
PDF

79

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/