Tumor-associated antigen targets for novel immune-based strategies in prostate cancer

Amman Bhasin , Patrick J. Mille , Aditya Eturi , Andrew Iskander , William Tester , Kevin K. Zarrabi

Journal of Translational Genetics and Genomics ›› 2024, Vol. 8 ›› Issue (1) : 55 -76.

PDF
Journal of Translational Genetics and Genomics ›› 2024, Vol. 8 ›› Issue (1) :55 -76. DOI: 10.20517/jtgg.2023.46
review-article

Tumor-associated antigen targets for novel immune-based strategies in prostate cancer

Author information +
History +
PDF

Abstract

Prostate cancer remains the most common malignancy among men in the United States. Advancements in androgen receptor signaling blockade have led to landmark approvals for its use in patients with locally advanced and metastatic disease. However, additional novel therapeutic strategies for both hormone-sensitive and castration-resistant diseases remain ongoing areas of study. Thus, we turn to the growth of immuno-oncology, which has led to improved treatment outcomes for a variety of hematologic and solid tumor malignancies. Prostate cancers have shown only modest results with immune checkpoint inhibition in published trials, and innovative strategies are now looking into enhancing cytotoxic T-cell activity against cancer cells. This review provides a thorough evaluation of tumor-associated antigens that are integrated into novel chimeric antigen receptor T-cell and bispecific T-cell engager therapies. Our review will evaluate the most recent advancements in immunotherapies, while also illustrating major obstacles and underlying limiting factors.

Keywords

Prostate cancer / bispecific antibody / CAR-T / immunotherapy

Cite this article

Download citation ▾
Amman Bhasin, Patrick J. Mille, Aditya Eturi, Andrew Iskander, William Tester, Kevin K. Zarrabi. Tumor-associated antigen targets for novel immune-based strategies in prostate cancer. Journal of Translational Genetics and Genomics, 2024, 8(1): 55-76 DOI:10.20517/jtgg.2023.46

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

American cancer society. Facts & figures 2023. American Cancer Society. Atlanta, CA, USA. 2023. Available from: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/2023-cancer-facts-figures.html [Last accessed on 4 Feb 2024]

[2]

National cancer institute. Cancer stat facts: prostate cancer. Available from: https://seer.cancer.gov/statfacts/html/prost.html [Last accessed on 4 Feb 2024]

[3]

HugginsC.Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate.CA Cancer J Clin1972;22:232-40

[4]

FeldmanBJ.The development of androgen-independent prostate cancer.Nat Rev Cancer2001;1:34-45

[5]

KhongHT.Natural selection of tumor variants in the generation of "tumor escape" phenotypes.Nat Immunol2002;3:999-1005 PMCID:PMC1508168

[6]

ThomasDA.TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance.Cancer Cell2005;8:369-80

[7]

HodiFS,McDermottDF.Improved survival with ipilimumab in patients with metastatic melanoma.N Engl J Med2010;363:711-23

[8]

MotzerRJ,McDermottDF.CheckMate 025 InvestigatorsNivolumab versus everolimus in advanced renal-cell carcinoma.N Engl J Med2015;373:1803-13

[9]

SchmidP,RugoHS.IMpassion130 Trial InvestigatorsAtezolizumab and nab-paclitaxel in advanced triple-negative breast cancer.N Engl J Med2018;379:2108-21

[10]

GandhiL,GadgeelS.KEYNOTE-189 InvestigatorsPembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer.N Engl J Med2018;378:2078-92

[11]

KantoffPW,ShoreND.IMPACT Study InvestigatorsSipuleucel-T immunotherapy for castration-resistant prostate cancer.N Engl J Med2010;363:411-22

[12]

TuckerMD,MarinD.Pembrolizumab in men with heavily treated metastatic castrate-resistant prostate cancer.Cancer Med2019;8:4644-55 PMCID:PMC6712455

[13]

SubudhiSK,AparicioAM.Combined CTLA-4 and PD-L1 blockade in patients with chemotherapy-naïve metastatic castration-resistant prostate cancer is associated with increased myeloid and neutrophil immune subsets in the bone microenvironment.J Immunother Cancer2021;9:e002919 PMCID:PMC8524287

[14]

TopalianSL,BrahmerJR.Safety, activity, and immune correlates of anti-PD-1 antibody in cancer.N Engl J Med2012;366:2443-54 PMCID:PMC3544539

[15]

PetrylakDP,ShafferDR.Safety and clinical activity of atezolizumab in patients with metastatic castration-resistant prostate cancer: a phase I study.Clin Cancer Res2021;27:3360-9

[16]

PowlesT,GillessenS.Atezolizumab with enzalutamide versus enzalutamide alone in metastatic castration-resistant prostate cancer: a randomized phase 3 trial.Nat Med2022;28:144-53 PMCID:PMC9406237

[17]

AgarwalN,MaughanBL.Cabozantinib in combination with atezolizumab in patients with metastatic castration-resistant prostate cancer: results from an expansion cohort of a multicentre, open-label, phase 1b trial (COSMIC-021).Lancet Oncol2022;23:899-909

[18]

KarzaiF,MadanRA.Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations.J Immunother Cancer2018;6:141 PMCID:PMC6280368

[19]

HotteS,ChiK.CCTG IND 232: A phase II study of durvalumab with or without tremelimumab in patients with metastatic castration resistant prostate cancer (mCRPC).Ann Oncol2019;30:v885

[20]

AntonarakisES,Gross-GoupilM.Pembrolizumab for treatment-refractory metastatic castration-resistant prostate cancer: multicohort, open-label phase II keynote-199 study.J Clin Oncol2020;38:395-405

[21]

GraffJN,HoimesCJ.Pembrolizumab plus enzalutamide for enzalutamide-resistant metastatic castration- resistant prostate cancer (mCRPC): updated analyses after one additional year of follow-up from cohorts 4 and 5 of the keynote-199 study. 2021;39:5042.

[22]

YuEY,GravisG.Pembrolizumab plus olaparib in patients with metastatic castration-resistant prostate cancer: long-term results from the phase 1b/2 keynote-365 cohort a study.Eur Urol2023;83:15-26

[23]

BeerTM,DrakeCG.Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer.J Clin Oncol2017;35:40-7

[24]

KwonED,ScherHI.CA184-043 InvestigatorsIpilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial.Lancet Oncol2014;15:700-12

[25]

ShenderovE,FuW.Nivolumab plus ipilimumab, with or without enzalutamide, in AR-V7-expressing metastatic castration-resistant prostate cancer: a phase-2 nonrandomized clinical trial.Prostate2021;81:326-38 PMCID:PMC8018565

[26]

GoebelerME.T cell-engaging therapies - BiTEs and beyond.Nat Rev Clin Oncol2020;17:418-34

[27]

HuehlsAM,SentmanCL.Bispecific T-cell engagers for cancer immunotherapy.Immunol Cell Biol2015;93:290-6 PMCID:PMC4445461

[28]

SimãoDC,MendesJL.Bispecific t-cell engagers therapies in solid tumors: focusing on prostate cancer.Cancers2023;15:1412 PMCID:PMC10001031

[29]

Smith-GarvinJE,JordanMS.T cell activation.Annu Rev Immunol2009;27:591-619 PMCID:PMC2740335

[30]

EinseleH,OrlowskiRZ.The BiTE (bispecific T-cell engager) platform: development and future potential of a targeted immuno-oncology therapy across tumor types.Cancer2020;126:3192-201

[31]

BrinkmannU.The making of bispecific antibodies.MAbs2017;9:182-212 PMCID:PMC5297537

[32]

VinayDS,PawelecG.Immune evasion in cancer: mechanistic basis and therapeutic strategies.Semin Cancer Biol2015;35 Suppl:S185-98

[33]

OffnerS,RomaniukA,BaeuerlePA.Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells.Mol Immunol2006;43:763-71

[34]

RossSL,McElroyPL.Bispecific T cell engager (BiTE®) antibody constructs can mediate bystander tumor cell killing.PLoS One2017;12:e0183390 PMCID:PMC5570333

[35]

ZarrabiKK,MillePJ.Bispecific PSMA antibodies and CAR-T in metastatic castration-resistant prostate cancer.Ther Adv Urol2023;15:17562872231182219 PMCID:PMC10285603

[36]

AldossI,NagorsenD,BaeuerlePA.Redirecting T cells to eradicate B-cell acute lymphoblastic leukemia: bispecific T-cell engagers and chimeric antigen receptors.Leukemia2017;31:777-87

[37]

GrossG,EshharZ.Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity.Proc Natl Acad Sci USA1989;86:10024-8 PMCID:PMC298636

[38]

JuneCH,KawalekarOU,MiloneMC.CAR T cell immunotherapy for human cancer.Science2018;359:1361-5

[39]

WrzesinskiC,KaiserA.Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific T cells.J Immunother2010;33:1-7 PMCID:PMC3247626

[40]

BenmebarekMR,CadilhaBL,EndresS.Killing mechanisms of chimeric antigen receptor (CAR) T cells.Int J Mol Sci2019;20:1283 PMCID:PMC6470706

[41]

LeeDW,PorterDL.Current concepts in the diagnosis and management of cytokine release syndrome.Blood2014;124:188-95

[42]

Van De Vyver AJ, Marrer-Berger E, Wang K, Lehr T, Walz AC. Cytokine release syndrome by T-cell-redirecting therapies: can we predict and modulate patient risk?.Clin Cancer Res2021;27:6083-94

[43]

MausMV,BishopMR.Society for immunotherapy of cancer (SITC) clinical practice guideline on immune effector cell-related adverse events.J Immunother Cancer2020;8:e001511 PMCID:PMC7745688

[44]

MorrisEC,GiavridisT.Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy.Nat Rev Immunol2022;22:85-96 PMCID:PMC8127450

[45]

KlingerM,NägeleV.Adhesion of T cells to endothelial cells facilitates blinatumomab-associated neurologic adverse events.Cancer Res2020;80:91-101

[46]

SteinAS,BenjaminR.Neurologic adverse events in patients with relapsed/refractory acute lymphoblastic leukemia treated with blinatumomab: management and mitigating factors.Ann Hematol2019;98:159-67 PMCID:PMC6334725

[47]

FlugelCL,KrenciuteG.Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours.Nat Rev Clin Oncol2023;20:49-62 PMCID:PMC10278599

[48]

LamersCH,GratamaJW,DebetsR.Treatment of metastatic renal cell carcinoma (mRCC) with CAIX CAR-engineered T-cells-a completed study overview.Biochem Soc Trans2016;44:951-9

[49]

GuoY,LiuY.Phase I study of chimeric antigen receptor-modified T cells in patients with EGFR-positive advanced biliary tract cancers.Clin Cancer Res2018;24:1277-86

[50]

FengK,GuoY.Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers.Protein Cell2018;9:838-47 PMCID:PMC6160389

[51]

ThistlethwaiteFC,GuestRD.The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity.Cancer Immunol Immunother2017;66:1425-36 PMCID:PMC5645435

[52]

KongHY.Emerging roles of human prostatic acid phosphatase.Biomol Ther2013;21:10-20 PMCID:PMC3762301

[53]

GuniaS,MayM,ErbersdoblerA.Expression of prostatic acid phosphatase (PSAP) in transurethral resection specimens of the prostate is predictive of histopathologic tumor stage in subsequent radical prostatectomies.Virchows Arch2009;454:573-9

[54]

SchaefferEM,AdraN.NCCN guidelines® insights: prostate cancer, version 1.2023.J Natl Compr Canc Netw2022;20:1288-98

[55]

MadanRA,DrakeCG.Putting the pieces together: completing the mechanism of action jigsaw for sipuleucel-T.J Natl Cancer Inst2020;112:562-73 PMCID:PMC7301097

[56]

ChengML.Beyond sipuleucel-T: immune approaches to treating prostate cancer.Curr Treat Options Oncol2014;15:115-26 PMCID:PMC4523381

[57]

SchnellU,GiepmansBN.EpCAM: structure and function in health and disease.Biochim Biophys Acta2013;1828:1989-2001

[58]

BalzarM,deBoer CJ.The biology of the 17-1A antigen (Ep-CAM).J Mol Med1999;77:699-712

[59]

HuangL,YangF.Functions of EpCAM in physiological processes and diseases (review).Int J Mol Med2018;42:1771-85 PMCID:PMC6108866

[60]

ZhouN,LiuH.MTA1-upregulated EpCAM is associated with metastatic behaviors and poor prognosis in lung cancer.J Exp Clin Cancer Res2015;34:157 PMCID:PMC4690245

[61]

MassonerP,MackB.EpCAM is overexpressed in local and metastatic prostate cancer, suppressed by chemotherapy and modulated by MET-associated miRNA-200c/205.Br J Cancer2014;111:955-64 PMCID:PMC4150273

[62]

HeissMM,KoralewskiP.The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial.Int J Cancer2010;127:2209-21 PMCID:PMC2958458

[63]

LinkeR,SeimetzD.Catumaxomab: clinical development and future directions.MAbs2010;2:129-36 PMCID:PMC2840231

[64]

Mau-SørensenM,DienstmannR.A phase I trial of intravenous catumaxomab: a bispecific monoclonal antibody targeting EpCAM and the T cell coreceptor CD3.Cancer Chemother Pharmacol2015;75:1065-73

[65]

KebenkoM,WolfM.A multicenter phase 1 study of solitomab (MT110, AMG 110), a bispecific EpCAM/CD3 T-cell engager (BiTE®) antibody construct, in patients with refractory solid tumors.Oncoimmunology2018;7:e1450710 PMCID:PMC6136859

[66]

ZorkoNA.Novel immune engagers and cellular therapies for metastatic castration-resistant prostate cancer: do we take a BiTe or ride BiKEs, TriKEs, and CARs?.Prostate Cancer Prostatic Dis2021;24:986-96 PMCID:PMC8613314

[67]

SilverDA,FairWR,Cordon-CardoC.Prostate-specific membrane antigen expression in normal and malignant human tissues.Clin Cancer Res1997;3:81-5

[68]

DavisMI,ThomasLM.Crystal structure of prostate-specific membrane antigen, a tumor marker and peptidase.Proc Natl Acad Sci USA2005;102:5981-6 PMCID:PMC556220

[69]

Mhawech-FaucegliaP,TerraccianoL.Prostate-specific membrane antigen (PSMA) protein expression in normal and neoplastic tissues and its sensitivity and specificity in prostate adenocarcinoma: an immunohistochemical study using mutiple tumour tissue microarray technique.Histopathology2007;50:472-83

[70]

KinoshitaY,LandasS.Expression of prostate-specific membrane antigen in normal and malignant human tissues.World J Surg2006;30:628-36

[71]

KaittanisC,HieronymusH.Prostate-specific membrane antigen cleavage of vitamin B9 stimulates oncogenic signaling through metabotropic glutamate receptors.J Exp Med2018;215:159-75 PMCID:PMC5748857

[72]

HestonWD.Characterization and glutamyl preferring carboxypeptidase function of prostate specific membrane antigen: a novel folate hydrolase.Urology1997;49:104-12

[73]

RahnKA,KaplinAI.Glutamate in CNS neurodegeneration and cognition and its regulation by GCPII inhibition.Curr Med Chem2012;19:1335-45

[74]

DorffTB,FormanSJ.Novel redirected T-cell immunotherapies for advanced prostate cancer.Clin Cancer Res2022;28:576-84 PMCID:PMC8866199

[75]

O'KeefeDS,HuangSS.A perspective on the evolving story of PSMA biology, PSMA-based imaging, and endoradiotherapeutic strategies.J Nucl Med2018;59:1007-13 PMCID:PMC6910646

[76]

RoweSP,Mana-AyM.Prospective evaluation of PSMA-targeted 18F-DCFPyL PET/CT in men with biochemical failure after radical prostatectomy for prostate cancer.J Nucl Med2020;61:58-61 PMCID:PMC6954467

[77]

HofmanMS,SandhuS.TheraP Trial Investigators and the Australian and New Zealand Urogenital and Prostate Cancer Trials Group[177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial.Lancet2021;397:797-804

[78]

HofmanMS,HicksRJ.[177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study.Lancet Oncol2018;19:825-33

[79]

SartorO,ChiKN.VISION InvestigatorsLutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer.N Engl J Med2021;385:1091-103

[80]

MaQ,LoAS.Advanced generation anti-prostate specific membrane antigen designer T cells for prostate cancer immunotherapy.Prostate2014;74:286-96

[81]

BoyerinasB,MurrayR.Abstract 602: a novel TGF-β/IL-12R signal conversion platform that protects CAR T cells from TGF-β-mediated immune suppression and concurrently amplifies effector function.Cancer Res2017;77:602

[82]

CalcinottoA,ZagatoE.IL-23 secreted by myeloid cells drives castration-resistant prostate cancer.Nature2018;559:363-9 PMCID:PMC6461206

[83]

WangD,ZhangX,LiuB.IL-23 and PSMA-targeted duo-CAR T cells in prostate cancer eradication in a preclinical model.J Transl Med2020;18:23 PMCID:PMC6961333

[84]

SlovinSF,HullingsandM.Chimeric antigen receptor (CAR+) modified T cells targeting prostate-specific membrane antigen (PSMA) in patients (pts) with castrate metastatic prostate cancer (CMPC).J Clin Oncol2013;31:72

[85]

JunghansRP,RathoreR.Phase I trial of anti-psma designer CAR-T cells in prostate cancer: possible role for interacting interleukin 2-T cell pharmacodynamics as a determinant of clinical response.Prostate2016;76:1257-70

[86]

SlovinSF,FalchookandGS.Phase 1 study of P-PSMA-101 CAR-T cells in patients with metastatic castration-resistant prostate cancer (mCRPC).J Clin Oncol2022;40:98

[87]

NarayanV,JungIY.Prostate Cancer Cellular Therapy Program InvestigatorsPSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial.Nat Med2022;28:724-34

[88]

FriedrichM,LutterbueseR.Regression of human prostate cancer xenografts in mice by AMG 212/BAY2010112, a novel PSMA/CD3-Bispecific BiTE antibody cross-reactive with non-human primate antigens.Mol Cancer Ther2012;11:2664-73

[89]

HummelHD,GrüllichC.Pasotuxizumab, a BiTE® immune therapy for castration-resistant prostate cancer: phase I, dose-escalation study findings.Immunotherapy2021;13:125-41

[90]

DeegenP,Nolan-StevauxO.The PSMA-targeting half-life extended BiTE therapy AMG 160 has potent antitumor activity in preclinical models of metastatic castration-resistant prostate cancer.Clin Cancer Res2021;27:2928-37

[91]

TranB,DorffT.609O results from a phase I study of AMG 160, a half-life extended (HLE), PSMA-targeted, bispecific T-cell engager (BiTE®) immune therapy for metastatic castration-resistant prostate cancer (mCRPC).Ann Oncol2020;31:S507

[92]

SubudhiSK,MalyJJ.Safety and efficacy of AMG 160, a half-life extended BiTE immune therapy targeting prostate-specific membrane antigen (PSMA), and other therapies for metastatic castration-resistant prostate cancer (mCRPC).J Clin Oncol2021;39:TPS5088

[93]

Hernandez-HoyosG,BaderR.MOR209/ES414, a novel bispecific antibody targeting PSMA for the treatment of metastatic castration-resistant prostate cancer.Mol Cancer Ther2016;15:2155-65

[94]

LimEA,ChiKN.Phase 1 study of safety and preliminary clinical activity of JNJ-63898081, a PSMA and CD3 bispecific antibody, for metastatic castration-resistant prostate cancer.Clin Genitourin Cancer2023;21:366-75 PMCID:PMC10219845

[95]

De BonoJSD,BeerTM.Results of an ongoing phase 1/2a dose escalation study of HPN424, a tri-specific half-life extended PSMA-targeting T-cell engager, in patients with metastatic castration-resistant prostate cancer (mCRPC).J Clin Oncol2021;39:5013

[96]

HeitmannJS,PflüglerM.Abstract CT141: CC-1, a bispecific PSMAxCD3 antibody for treatment of prostate carcinoma: results of the ongoing phase I dose escalation trial.Cancer Res2022;82:CT141

[97]

ReiterRE,WatabeT.Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer.Proc Natl Acad Sci USA1998;95:1735-40 PMCID:PMC19171

[98]

RaffAB,KastWM.Prostate stem cell antigen: a prospective therapeutic and diagnostic target.Cancer Lett2009;277:126-32 PMCID:PMC2680000

[99]

SaekiN,YoshidaT.Prostate stem cell antigen: a Jekyll and Hyde molecule?.Clin Cancer Res2010;16:3533-8 PMCID:PMC2905486

[100]

GuZ,YamashiroJ.Prostate stem cell antigen (PSCA) expression increases with high gleason score, advanced stage and bone metastasis in prostate cancer.Oncogene2000;19:1288-96

[101]

XuM,BizzaroCL.STEAP1-4 (six-transmembrane epithelial antigen of the prostate 1-4) and their clinical implications for prostate cancer.Cancers2022;14:4034 PMCID:PMC9406800

[102]

OhgamiRS,McDonaldA.The steap proteins are metalloreductases.Blood2006;108:1388-94 PMCID:PMC1785011

[103]

KnutsonMD.Steap proteins: implications for iron and copper metabolism.Nutr Rev2007;65:335-40

[104]

GomesIM,GasparC.Knockdown of STEAP1 inhibits cell growth and induces apoptosis in LNCaP prostate cancer cells counteracting the effect of androgens.Med Oncol2018;35:40

[105]

YamamotoT,KobayashiJ.Six-transmembrane epithelial antigen of the prostate-1 plays a role for in vivo tumor growth via intercellular communication.Exp Cell Res2013;319:2617-26

[106]

RodebergDA,ElsawaSF.Recognition of six-transmembrane epithelial antigen of the prostate-expressing tumor cells by peptide antigen-induced cytotoxic T lymphocytes.Clin Cancer Res2005;11:4545-52 PMCID:PMC1698136

[107]

LinTY,LongA,CheungNV.Novel potent anti-STEAP1 bispecific antibody to redirect T cells for cancer immunotherapy.J Immunother Cancer2021;9:e003114 PMCID:PMC8438958

[108]

BhatiaV,ParivaTE.Targeting advanced prostate cancer with STEAP1 chimeric antigen receptor T cell and tumor-localized IL-12 immunotherapy.Nat Commun2023;14:2041

[109]

JinY,JinY.Development of STEAP1 targeting chimeric antigen receptor for adoptive cell therapy against cancer.Mol Ther Oncolytics2022;26:189-206 PMCID:PMC9278049

[110]

LiC,LiangL.718 AMG 509, a STEAP1 × CD3 bispecific XmAb® 2+1 immune therapy, exhibits avidity-driven binding and preferential killing of high STEAP1-expressing prostate and Ewing sarcoma cancer cells.J Immunother Cancer2020;8:A760

[111]

DanilaDC,ApplemanLJ.A phase 1 study of AMG 509 in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC).J Clin Oncol2022;40:TPS5101

[112]

KellyWK,LinCC.Xaluritamig, a STEAP1 × CD3 XmAb 2+1 immune therapy for metastatic castration-resistant prostate cancer: results from dose exploration in a first-in-human study.Cancer Discov2024;14:76-89 PMCID:PMC10784743

[113]

StenzlA,SyndikusI.Results of the randomized, placebo-controlled phase I/IIB trial of CV9104, an mRNA based cancer immunotherapy, in patients with metastatic castration-resistant prostate cancer (mCRPC).J Immunother Cancer2017;28:V408-9

[114]

de la Garcia-Hernandez ML, Gray A, Hubby B, Kast WM. In vivo effects of vaccination with six-transmembrane epithelial antigen of the prostate: a candidate antigen for treating prostate cancer.Cancer Res2007;67:1344-51

[115]

ZaffutoE,ZanatyM.Contemporary incidence and cancer control outcomes of primary neuroendocrine prostate cancer: a SEER database analysis.Clin Genitourin Cancer2017;15:e793-800

[116]

BluemnEG,LucasJM.Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling.Cancer Cell2017;32:474-89.e6 PMCID:PMC5750052

[117]

YamadaY.Clinical and biological features of neuroendocrine prostate cancer.Curr Oncol Rep2021;23:15 PMCID:PMC7990389

[118]

PucaL,SailerV.Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer.Sci Transl Med2019;11:eaav0891 PMCID:PMC6525633

[119]

HippS,Drobits-HandlB.A bispecific DLL3/CD3 IgG-like T-cell engaging antibody induces antitumor responses in small cell lung cancer.Clin Cancer Res2020;26:5258-68

[120]

ChouJ,WangS.Immunotherapeutic targeting and PET imaging of DLL3 in small-cell neuroendocrine prostate cancer.Cancer Res2023;83:301-15 PMCID:PMC10263373

[121]

LeeJK,ChaiT.Systemic surfaceome profiling identifies target antigens for immune-based therapy in subtypes of advanced prostate cancer.Proc Natl Acad Sci USA2018;115:E4473-82 PMCID:PMC5949005

[122]

ChaS,BrownC.Abstract PO083: treatment of CEA-positive solid tumors with anti-CEA chimeric antigen receptor T-cells in CEA transgenic mice.Cancer Immunol Res2021;9:PO083

[123]

PicardaE,ZangX.Molecular pathways: targeting B7-H3 (CD276) for human cancer immunotherapy.Clin Cancer Res2016;22:3425-31 PMCID:PMC4947428

[124]

LiD,ShenJ.Comprehensive understanding of B7 family in gastric cancer: expression profile, association with clinicopathological parameters and downstream targets.Int J Biol Sci2020;16:568-82 PMCID:PMC6990920

[125]

YangS,ZhaoQ.B7-H3, a checkpoint molecule, as a target for cancer immunotherapy.Int J Biol Sci2020;16:1767-73 PMCID:PMC7211166

[126]

LankaSM,AntonarakisES.Metastatic castration-resistant prostate cancer, immune checkpoint inhibitors, and beyond.Curr Oncol2023;30:4246-56 PMCID:PMC10137248

[127]

KontosF,KurokawaT.B7-H3: an attractive target for antibody-based immunotherapy.Clin Cancer Res2021;27:1227-35 PMCID:PMC7925343

[128]

GuoC,GurelB.B7-H3 as a therapeutic target in advanced prostate cancer.Eur Urol2023;83:224-38

[129]

ShiX,BergomHE.Integrative molecular analyses define correlates of high B7-H3 expression in metastatic castrate-resistant prostate cancer.NPJ Precis Oncol2022;6:80 PMCID:PMC9630314

[130]

LiS,WangM.B7-H3 specific CAR-T cells exhibit potent activity against prostate cancer.Cell Death Discov2023;9:147 PMCID:PMC10164129

[131]

BenzonB,HaffnerMC.Correlation of B7-H3 with androgen receptor, immune pathways and poor outcome in prostate cancer: an expression-based analysis.Prostate Cancer Prostatic Dis2017;20:28-35 PMCID:PMC6512966

[132]

ShiW,ZhaoY.Immune checkpoint B7-H3 is a therapeutic vulnerability in prostate cancer harboring PTEN and TP53 deficiencies.Sci Transl Med2023;15:eadf6724

[133]

MendesAA,KaurHB.Association of B7-H3 expression with racial ancestry, immune cell density, and androgen receptor activation in prostate cancer.Cancer2022;128:2269-80

[134]

ShenderovE,LotanTL.Neoadjuvant enoblituzumab in localized prostate cancer: a single arm, phase 2 trial.Nat Med2023;29:888-97

[135]

BeattyGL.Immune escape mechanisms as a guide for cancer immunotherapy.Clin Cancer Res2015;21:687-92 PMCID:PMC4334715

[136]

FerroneC.Dual roles for immunity in gastrointestinal cancers.J Clin Oncol2010;28:4045-51 PMCID:PMC4872327

[137]

SchreiberRD,SmythMJ.Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion.Science2011;331:1565-70

[138]

CampoliM.HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance.Oncogene2008;27:5869-85 PMCID:PMC2729106

[139]

LeMercier I,LinesJL.VISTA regulates the development of protective antitumor immunity.Cancer Res2014;74:1933-44 PMCID:PMC4116689

[140]

SprangerS,ZhaY.Up-regulation of PD-L1, IDO, and Tregs in the melanoma tumor microenvironment is driven by CD8+ T cells.Sci Transl Med2013;5:200ra116 PMCID:PMC4136707

[141]

GardnerRA,RiversJ.Preemptive mitigation of CD19 CAR T-cell cytokine release syndrome without attenuation of antileukemic efficacy.Blood2019;134:2149-58 PMCID:PMC6908832

[142]

LiuS,YinZ.Corticosteroids do not influence the efficacy and kinetics of CAR-T cells for B-cell acute lymphoblastic leukemia.Blood Cancer J2020;10:15 PMCID:PMC7005173

[143]

ViardotA,StieglmaierJ,JabbourE.Concepts in immuno-oncology: tackling B cell malignancies with CD19-directed bispecific T cell engager therapies.Ann Hematol2020;99:2215-29 PMCID:PMC7481145

[144]

LiH,SongE.Challenges and strategies for next-generation bispecific antibody-based antitumor therapeutics.Cell Mol Immunol2020;17:451-61 PMCID:PMC7193592

[145]

PereraMPJ,RisbridgerGP.Chimeric antigen receptor T-cell therapy in metastatic castrate-resistant prostate cancer.Cancers2022;14:503 PMCID:PMC8833489

[146]

BraigF,GoebelerM.Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking.Blood2017;129:100-4

[147]

KamatNV,LeeJK.BiTE-ing into prostate cancer with bispecific T-cell engagers.Clin Cancer Res2021;27:2675-7 PMCID:PMC8127346

[148]

CorrentiCE,devan der Schueren WJ.Simultaneous multiple interaction T-cell engaging (SMITE) bispecific antibodies overcome bispecific T-cell engager (BiTE) resistance via CD28 co-stimulation.Leukemia2018;32:1239-43 PMCID:PMC5943151

[149]

BrycesonYT,LjunggrenHG.Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion.Blood2006;107:159-66 PMCID:PMC1895346

[150]

SchmohlJU,TarasE,ValleraDA.Enhanced ADCC and NK cell activation of an anticarcinoma bispecific antibody by genetic insertion of a modified IL-15 cross-linker.Mol Ther2016;24:1312-22 PMCID:PMC5088765

[151]

FelicesM,DavisZB,ValleraDA.Generation of BiKEs and TriKEs to improve NK cell-mediated targeting of tumor cells. In: Somanchi SS, editor. Natural killer cells. New York: Springer; 2016. pp. 333-46. PMCID:PMC5823010

[152]

SaxenaM,MeliefCJM.Therapeutic cancer vaccines.Nat Rev Cancer2021;21:360-78

[153]

ShastryM,ChandarlapatyS,PowlesT.Rise of antibody-drug conjugates: the present and future.Am Soc Clin Oncol Educ Book2023;43:e390094

[154]

MadanRA,MohebtashM,GulleyJL.Prostvac-VF: a vector-based vaccine targeting PSA in prostate cancer.Expert Opin Investig Drugs2009;18:1001-11 PMCID:PMC3449276

[155]

KyriakopoulosCE,FerrariAC.Multicenter phase I trial of a DNA vaccine encoding the androgen receptor ligand-binding domain (pTVG-AR, MVI-118) in patients with metastatic prostate cancer.Clin Cancer Res2020;26:5162-71 PMCID:PMC7541575

[156]

BardiaA,KioEA.Sacituzumab govitecan, a trop-2-directed antibody-drug conjugate, for patients with epithelial cancer: final safety and efficacy results from the phase I/II IMMU-132-01 basket trial.Ann Oncol2021;32:746-56

[157]

BidkarAP,BobbaKN.Treatment of prostate cancer with CD46-targeted 225Ac alpha particle radioimmunotherapy.Clin Cancer Res2023;29:1916-28 PMCID:PMC10183825

AI Summary AI Mindmap
PDF

60

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/