The many roles of the Alzheimer-associated gene PM20D1

Diana Garro-Núñez , Pablo Mora-Cubillo , Sammy Fonseca-Bone , María Jesús Picado-Martínez , Michael Fonseca-Brenes , Henriette Raventós-Vorst , Gabriela Chavarría-Soley

Journal of Translational Genetics and Genomics ›› 2022, Vol. 6 ›› Issue (3) : 361 -74.

PDF
Journal of Translational Genetics and Genomics ›› 2022, Vol. 6 ›› Issue (3) :361 -74. DOI: 10.20517/jtgg.2022.10
Review

The many roles of the Alzheimer-associated gene PM20D1

Author information +
History +
PDF

Abstract

PM20D1 is a little studied enzyme until recently, belonging to the mammalian M20 peptidase family, which catalyzes both the synthesis and hydrolysis of N-acyl amino acids (NAAs). NAAs are bioactive lipids biosynthesized from free fatty acids and free amino acids. These molecules have been associated with many biological functions; however, most of the biochemical mechanisms have not yet been described. The best-known biochemical mechanism is the one involved in thermogenesis, which also has implications for reactive oxygen species levels and cell preservation. In the last few years, genetic variation in PM20D1, as well as changes in its methylation and expression levels, have been reported to be associated with several disease phenotypes, including Alzheimer’s disease. In this review, we explore the current knowledge regarding the PM20D1 gene, including aspects such as its biology, potential functions, regulation of its expression, and role in different phenotypes such as Alzheimer’s disease, obesity, Parkinson’s disease, and several other disorders.

Keywords

N-acyl amino acid / neuropsychiatric disorders / M20 peptidase / mQTL / eQTL

Cite this article

Download citation ▾
Diana Garro-Núñez, Pablo Mora-Cubillo, Sammy Fonseca-Bone, María Jesús Picado-Martínez, Michael Fonseca-Brenes, Henriette Raventós-Vorst, Gabriela Chavarría-Soley. The many roles of the Alzheimer-associated gene PM20D1. Journal of Translational Genetics and Genomics, 2022, 6(3): 361-74 DOI:10.20517/jtgg.2022.10

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Visscher PM,Zhang Q.10 Years of GWAS discovery: biology, function, and translation.Am J Hum Genet2017;101:5-22 PMCID:PMC5501872

[2]

Li S.DNA methylation methods: global DNA methylation and methylomic analyses.Methods2021;187:28-43 PMCID:PMC7914139

[3]

Stark R,Hadfield J.RNA sequencing: the teenage years.Nat Rev Genet2019;20:631-56

[4]

Kim JT,Terrell SM,Long JZ.Family-wide annotation of enzymatic pathways by parallel in vivo metabolomics.Cell Chem Biol2019;26:1623-1629.e3 PMCID:PMC6874721

[5]

Sanchez-Mut JV,Monk D.Comprehensive analysis of PM20D1 QTL in Alzheimer’s disease.Clin Epigenetics2020;12:20 PMCID:PMC6998837

[6]

Sanchez-Mut JV,Silva BA.PM20D1 is a quantitative trait locus associated with Alzheimer’s disease.Nat Med2018;24:598-603

[7]

Wang Q,Readhead B.Longitudinal data in peripheral blood confirm that PM20D1 is a quantitative trait locus (QTL) for Alzheimer’s disease and implicate its dynamic role in disease progression.Clin Epigenetics2020;12:189 PMCID:PMC7724832

[8]

Coto-Vílchez C,Mora-Villalobos L.Genome-wide DNA methylation profiling in nonagenarians suggests an effect of PM20D1 in late onset Alzheimer’s disease.CNS Spectr2021;1-27

[9]

Long JZ,Bateman LA.The secreted enzyme PM20D1 regulates lipidated amino acid uncouplers of mitochondria.Cell2016;166:424-35 PMCID:PMC4947008

[10]

Long JZ,Berdan CA.Ablation of PM20D1 reveals N-acyl amino acid control of metabolism and nociception.Proc Natl Acad Sci USA2018;115:E6937-45 PMCID:PMC6055169

[11]

Schaum N,Neff NF.Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris.Nature2018;562:367-72 PMCID:PMC6642641

[12]

GTEx portal. Available from: https://gtexportal.org/home/gene/PM20D1 [Last accessed on 12 August 2022].

[13]

HBT - Human Brain Transcriptome. Available from: https://hbatlas.org/ [Last accessed on 12 August 2022].

[14]

Brain RNA-Seq. Available from: http://brainrnaseq.org/ [Last accessed on 12 August 2022].

[15]

Velmeshev D,Jung D.Single-cell genomics identifies cell type-specific molecular changes in autism.Science2019;364:685-9 PMCID:PMC7678724

[16]

Kim JT,Wei W.A Plasma protein network regulates PM20D1 and N-Acyl amino acid bioactivity.Cell Chem Biol2020;27:1130-1139.e4 PMCID:PMC7502524

[17]

Hanuš L,Bab I.N-Acyl amino acids and their impact on biological processes.Biofactors2014;40:381-8

[18]

Milman G,Abu-Lafi S.N-arachidonoyl L-serine, an endocannabinoid-like brain constituent with vasodilatory properties.Proc Natl Acad Sci USA2006;103:2428-33 PMCID:PMC1413724

[19]

Tosini G,Iuvone PM.N-acetylserotonin: neuroprotection, neurogenesis, and the sleepy brain.Neuroscientist2012;18:645-53 PMCID:PMC3422380

[20]

Rimmerman N,Hughes HV.N-palmitoyl glycine, a novel endogenous lipid that acts as a modulator of calcium influx and nitric oxide production in sensory neurons.Mol Pharmacol2008;74:213-24 PMCID:PMC8130248

[21]

Huang SM,Petros TJ.Identification of a new class of molecules, the arachidonyl amino acids, and characterization of one member that inhibits pain.J Biol Chem2001;276:42639-44

[22]

Tan B,Yu YW.Identification of endogenous acyl amino acids based on a targeted lipidomics approach.J Lipid Res2010;51:112-9 PMCID:PMC2789771

[23]

Lin H,Roche AM.Discovery of hydrolysis-resistant isoindoline N-Acyl amino acid analogues that stimulate mitochondrial respiration.J Med Chem2018;61:3224-30 PMCID:PMC6335027

[24]

Keipert S,Ost M.Long-term cold adaptation does not require FGF21 or UCP1.Cell Metab2017;26:437-446.e5

[25]

Gao Y,Braz GRF,Yang G.Establishing the potency of N-acyl amino acids versus conventional fatty acids as thermogenic uncouplers in cells and mitochondria from different tissues.Biochim Biophys Acta Bioenerg2022;1863:148542

[26]

Mookerjee SA,Jastroch M.Mitochondrial uncoupling and lifespan.Mech Ageing Dev2010;131:463-72 PMCID:PMC2924931

[27]

Brand M.Uncoupling to survive? The role of mitochondrial inefficiency in ageing.Exper Gerontol2000;35:811-20

[28]

Zaninovich ÁA.Role of the uncoupling proteins UCP1, UCP2 and UCP3 in energy balance, type 2 diabetes and obesity: synergism with the thyroid.Med B Aires2005;65:163-9.

[29]

Wallace DC.A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine.Annu Rev Genet2005;39:359-407 PMCID:PMC2821041

[30]

Papa S. Reactive oxygen species, mitochondria, apoptosis and aging. In: Gellerich FN, Zierz S, editors. Detection of mitochondrial diseases. Boston: Springer; 1997. pp. 305-19.

[31]

Brand MD,Esteves TC.Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins.Free Radic Biol Med2004;37:755-67

[32]

Kokoszka JE,Levy SE.The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore.Nature2004;427:461-5

[33]

Cobley JN,Bailey DM.13 reasons why the brain is susceptible to oxidative stress.Redox Biol2018;15:490-503 PMCID:PMC5881419

[34]

consortium. human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans.Science2015;348:648-60

[35]

consortium. Genetic effects on gene expression across human tissues.Nature2017;550:204-13

[36]

Benson KK,Weller AH.Natural human genetic variation determines basal and inducible expression of PM20D1, an obesity-associated gene.Proc Natl Acad Sci USA2019;116:23232-42 PMCID:PMC6859347

[37]

Cibulka M,Grendar M.Alzheimer’s disease-associated SNP rs708727 in SLC41A1 may increase risk for parkinson’s disease: report from enlarged slovak study.Int J Mol Sci2022;23:1604 PMCID:PMC8835868

[38]

Greenawalt DM,Chudin E.A survey of the genetics of stomach, liver, and adipose gene expression from a morbidly obese cohort.Genome Res2011;21:1008-16 PMCID:PMC3129244

[39]

Gunasekara CJ,Laritsky E.A genomic atlas of systemic interindividual epigenetic variation in humans.Genome Biol2019;20:105 PMCID:PMC6545702

[40]

Nica AC,Glass D.The architecture of gene regulatory variation across multiple human tissues: the MuTHER study.PLoS Genet2011;7:e1002003 PMCID:PMC3033383

[41]

Civelek M,Pan C.Genetic regulation of adipose gene expression and cardio-metabolic traits.Am J Hum Genet2017;100:428-43 PMCID:PMC5339333

[42]

Karczewski KJ,Tiao G.The mutational constraint spectrum quantified from variation in 141,456 humans.Nature2020;581:434-43 PMCID:PMC7334197

[43]

Heyn H,Hernando-Herraez I.DNA methylation contributes to natural human variation.Genome Res2013;23:1363-72 PMCID:PMC3759714

[44]

Li QS,Davis JW.Association of peripheral blood DNA methylation level with Alzheimer’s disease progression.Clin Epigenetics2021;13:191 PMCID:PMC8518178

[45]

Pérez RF,Tejedor JR.Blood DNA methylation patterns in older adults with evolving dementia.J Gerontol A Biol Sci Med Sci2022;glac068

[46]

Kim B,Kim HS.Methyl-CpG binding protein 2 in alzheimer dementia.Int Neurourol J2019;23:S72-81 PMCID:PMC6905210

[47]

Feinberg AP,Fradin D.Personalized epigenomic signatures that are stable over time and covary with body mass index.Sci Transl Med2010;2:49ra67 PMCID:PMC3137242

[48]

Larrick JW,Mendelsohn AR.Uncoupling mitochondrial respiration for diabesity.Rejuvenation Res2016;19:337-40

[49]

Lee P.Wasting energy to treat obesity.N Engl J Med2016;375:2298-300

[50]

Yang R,Lee CH.PM20D1 is a circulating biomarker closely associated with obesity, insulin resistance and metabolic syndrome.Eur J Endocrinol2021;186:151-61

[51]

Yengo L,Kemper KE.Meta-analysis of genome-wide association studies for height and body mass index in ~700000 individuals of European ancestry.Hum Mol Genet2018;27:3641-9 PMCID:PMC6488973

[52]

Noronha NY,Sae-lee C.Novel Zinc-related differentially methylated regions in leukocytes of women with and without obesity.Front Nutr2022;9:785281

[53]

Satake W,Mizuta I.Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease.Nat Genet2009;41:1303-7

[54]

Yan Y,Mo X.Genetic variants in the RAB7L1 and SLC41A1 genes of the PARK16 locus in chinese parkinson’s disease patients.Int J Neurosci2011;121:632-6

[55]

Tucci A,Houlden H.Genetic variability at the PARK16 locus.Eur J Hum Genet2010;18:1356-9 PMCID:PMC3002857

[56]

Parkinson’s Disease Genomics Consortium (IPDGC); Wellcome Trust Case Control Consortium 2 (WTCCC2). A two-stage meta-analysis identifies several new loci for Parkinson’s disease.PLoS Genet2011;7:e1002142

[57]

Rudakou U,Krohn L.Targeted sequencing of Parkinson’s disease loci genes highlights SYT11, FGF20 and other associations.Brain2021;144:462-72 PMCID:PMC7940168

[58]

Gan-Or Z,Dahary D.Association of sequence alterations in the putative promoter of RAB7L1 with a reduced parkinson disease risk.Arch Neurol2012;69:105-10

[59]

Kolisek M,Mastrototaro L.Substitution p.A350V in Na+/Mg2+ exchanger SLC41A1, potentially associated with Parkinson’s disease, is a gain-of-function mutation.PLoS One2013;8:e71096

[60]

Lin CH,Chen WL.Variant R244H in Na+/Mg2+ exchanger SLC41A1 in Taiwanese Parkinson’s disease is associated with loss of Mg2+ efflux function.Parkinsonism Relat Disord2014;20:600-3

[61]

Bai Y,Huang X,Qiu P.Associations of rs823128, rs1572931, and rs823156 polymorphisms with reduced Parkinson’s disease risks.Neuroreport2017;28:936-41 PMCID:PMC5585133

[62]

Singh S.Functional association between NUCKS1 gene and Parkinson disease: A potential susceptibility biomarker.Bioinformation2019;15:548-56 PMCID:PMC6822519

[63]

Pihlstrøm L,Bjørnarå KA.Fine mapping and resequencing of the PARK16 locus in Parkinson’s disease.J Hum Genet2015;60:357-62

[64]

Nalls MA,Lill CM.Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease.Nat Genet2014;46:989-93 PMCID:PMC4146673

[65]

Hauser DN.Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism.Neurobiol Dis2013;51:35-42 PMCID:PMC3565564

[66]

Subramaniam SR.Mitochondrial dysfunction and oxidative stress in Parkinson’s disease.Prog Neurobiol2013;106-107:17-32 PMCID:PMC3742021

[67]

Mann VM,Daniel SE.Complex I, iron, and ferritin in Parkinson’s disease substantia nigra.Ann Neurol1994;36:876-81

[68]

Schapira AH,Dexter D,Jenner P.Mitochondrial complex I deficiency in Parkinson’s disease.J Neurochem1990;54:823-7

[69]

González-Rodríguez P,Stout KA.Disruption of mitochondrial complex I induces progressive parkinsonism.Nature2021;599:650-6 PMCID:PMC9189968

[70]

Votyakova TV.Ca2+-induced permeabilization promotes free radical release from rat brain mitochondria with partially inhibited complex I.J Neurochem2005;93:526-37

[71]

Koopman WJ,Visch HJ.Inhibition of complex I of the electron transport chain causes O2-mediated mitochondrial outgrowth.Am J Physiol Cell Physiol2005;288:C1440-50

[72]

Jenner P.Oxidative stress in Parkinson’s disease.Ann Neurol2003;53:S26-36

[73]

Hastings TG.Enzymatic oxidation of dopamine: the role of prostaglandin H synthase.J Neurochem1995;64:919-24

[74]

Berman SB.Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease.J Neurochem1999;73:1127-37

[75]

Buc-Calderon P.Increase in the survival time of mice exposed to ionizing radiation by a new class of free radical scavengers.Experientia1990;46:708-10

[76]

Suzen S,Coban T.Novel N-acyl dehydroalanine derivatives as antioxidants: studies on rat liver lipid peroxidation levels and DPPH free radical scavenging activity.J Enzyme Inhib Med Chem2006;21:179-85

[77]

Chang KH,Chen YC.Association between PARK16 and Parkinson’s disease in the Han Chinese population: a meta-analysis.Neurobiol Aging2013;34:2442.e5-9

[78]

Tan EK,Tan LC.Analysis of GWAS-linked loci in Parkinson disease reaffirms PARK16 as a susceptibility locus.Neurology2010;75:508-12 PMCID:PMC2918477

[79]

Yan YP,Tian J.An association between the PARK16 locus and Parkinson’s disease in a cohort from eastern China.Parkinsonism Relat Disord2011;17:737-9

[80]

Simón-Sánchez J,Bras JM.Genome-wide association study reveals genetic risk underlying Parkinson’s disease.Nat Genet2009;41:1308-12 PMCID:PMC2787725

[81]

Deng X,Allen JC.Parkinson’s disease GWAS-linked Park16 carriers show greater motor progression.J Med Genet2019;56:765-8 PMCID:PMC6860401

[82]

Henderson AR,Meechoovet B.DNA methylation and expression profiles of whole blood in parkinson’s disease.Front Genet2021;12:640266 PMCID:PMC8107387

[83]

Goldstein O,Casey F.PARK16 locus: differential effects of the non-coding rs823114 on Parkinson’s disease risk, RNA expression, and DNA methylation.J Genet Genomics2021;48:341-5

[84]

Meireles J.Cognitive impairment and dementia in Parkinson’s disease: clinical features, diagnosis, and management.Front Neurol2012;3:88 PMCID:PMC3360424

[85]

Hanagasi HA,Emre M.Dementia in Parkinson’s disease.J Neurol Sci2017;374:26-31

[86]

Gunawardhana LP,Mattes J,Simpson JL.Differential DNA methylation profiles of infants exposed to maternal asthma during pregnancy.Pediatr Pulmonol2014;49:852-62

[87]

Langie SAS,Declerck K.Whole-genome saliva and blood DNA methylation profiling in individuals with a respiratory allergy.PLoS ONE2016;11:e0151109.

[88]

Imran S,Koplin J.Epigenetic programming underpins B-cell dysfunction in peanut and multi-food allergy.Clin Transl Immunol2021;10:e1324 PMCID:PMC8384135

[89]

Li X,Xing J.Different epigenome regulation and transcriptome expression of CD4+ and CD8+ T cells from monozygotic twins discordant for psoriasis.Australas J Dermatol2020;61:e388-94

[90]

Maltby VE,Sanders KA.Differential methylation at MHC in CD4+ T cells is associated with multiple sclerosis independently of HLA-DRB1.MHC2017;9:71 PMCID:PMC5516341

[91]

Suderman M,Pappas JJ.Childhood abuse is associated with methylation of multiple loci in adult DNA.BMC Med Genomics2014;7:13 PMCID:PMC4007631

[92]

Gao Y,Qin J.Acute and chronic cold exposure differentially affects the browning of porcine white adipose tissue.Animal2018;12:1435-41

[93]

Sun Q,Yang J,Feng W.Mendelian randomization analysis identified potential genes pleiotropically associated with polycystic ovary syndrome.Reprod Sci2022;29:1028-37 PMCID:PMC8547723

[94]

Guay SP,Mathieu P,Gaudet D.A study in familial hypercholesterolemia suggests reduced methylomic plasticity in men with coronary artery disease.Epigenomics2015;7:17-34

[95]

Huang X,Wu L.Clinical significance of peptidase M20 domain containing 1 ii patients with carotid atherosclerosis.Arq Bras Cardiol2022:S0066-782X2022005005206

[96]

Gómez-Úriz AM,Mansego ML.Obesity and ischemic stroke modulate the methylation levels of KCNQ1 in white blood cells.Hum Mol Genet2015;24:1432-40

[97]

Song MA,Marian C.Racial differences in genome-wide methylation profiling and gene expression in breast tissues from healthy women.Epigenetics2015;10:1177-87 PMCID:PMC4844220

[98]

Castro de Moura M,Planas-Serra L.Epigenome-wide association study of COVID-19 severity with respiratory failure.EBioMedicine2021;66:103339 PMCID:PMC8047083

[99]

Goldmann T,Müller J.DNA methylation profiles of bronchoscopic biopsies for the diagnosis of lung cancer.Clin Epigenetics2021;13:38 PMCID:PMC7890863

[100]

Revill K,Lachenmayer A.Genome-wide methylation analysis and epigenetic unmasking identify tumor suppressor genes in hepatocellular carcinoma.Gastroenterology2013;145:1424-35.e1 PMCID:PMC3892430

[101]

Huang J,Sun Y.Use of methylation profiling to identify significant differentially methylated genes in bone marrow mesenchymal stromal cells from acute myeloid leukemia.Int J Mol Med2018;41:679-86 PMCID:PMC5752236

[102]

Chidambaran V,Pilipenko V.Methylation quantitative trait locus analysis of chronic postsurgical pain uncovers epigenetic mediators of genetic risk.Epigenomics2021;13:613-30 PMCID:PMC8173520

[103]

Mohandas N,Hopkins S.Evidence for type-specific DNA methylation patterns in epilepsy: a discordant monozygotic twin approach.Epigenomics2019;11:951-68

PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

/