Clinical significance of aetiological heterogeneity in classical Hodgkin lymphoma

Henrik Hjalgrim , Klaus Rostgaard

Journal of Translational Genetics and Genomics ›› 2022, Vol. 6 ›› Issue (1) : 134 -46.

PDF
Journal of Translational Genetics and Genomics ›› 2022, Vol. 6 ›› Issue (1) :134 -46. DOI: 10.20517/jtgg.2021.46
Review

Clinical significance of aetiological heterogeneity in classical Hodgkin lymphoma

Author information +
History +
PDF

Abstract

In this review we present contemporary understanding of aetiological heterogeneity in Hodgkin lymphoma, discuss how this may influence tumour phenotype and whether it does or may impact treatment outcomes. Many new treatments are being tested in this era. We especially discuss T-cell therapy and immune checkpoint blockade, because these two modern treatments are expected to have differential efficacy by the presence/absence of Epstein-Barr virus in the malignant Hodgkin-Reed-Sternberg cells. Survival after Hodgkin lymphoma is excellent in many patient strata with first-line treatment, but less so for patients with refractory or relapsing disease. On the other hand, this good prognosis also means that very large trials are needed to demonstrate superior efficacy of new treatment regimes. And our understanding of aetiological heterogeneity in Hodgkin lymphoma and how it affects prognosis is hampered for the same reason. We discuss the potential for fine-tuning risk stratification and treatment based on information that is little used today.

Keywords

Epstein-Barr virus / classical Hodgkin lymphoma / histology / age / sex / tumour micro environment / human leukocyte antigen / checkpoint inhibitors

Cite this article

Download citation ▾
Henrik Hjalgrim, Klaus Rostgaard. Clinical significance of aetiological heterogeneity in classical Hodgkin lymphoma. Journal of Translational Genetics and Genomics, 2022, 6(1): 134-46 DOI:10.20517/jtgg.2021.46

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ferlay J,Lam FM. Global and Regional Estimates of the Incidence and Mortality for 38 Cancers: GLOBOCAN 2018. Available from: https://gco.iarc.fr/today [Last accessed on 28 Jan 2022]

[2]

Hjalgrim H,Glaser S. Hodgkin lymphoma. In: Thun MJ, Linet MS, Cerhan JR, Haiman CA, Schottenfeld D, editors. Cancer epidemiology and prevention. New York: Oxford University Press; 2018. p. 745-66.

[3]

Shanbhag S.Hodgkin lymphoma: a review and update on recent progress.CA Cancer J Clin2018;68:116-32 PMCID:PMC5842098

[4]

Biccler JL,Eloranta S.Relapse risk and loss of lifetime after modern combined modality treatment of young patients with Hodgkin lymphoma: a Nordic lymphoma epidemiology group study.J Clin Oncol2019;37:703-13

[5]

Caro J.New approaches to managing relapsed/refractory Hodgkin lymphoma: the role of checkpoint inhibitors and beyond.Expert Rev Hematol2021;14:741-50

[6]

Glimelius I.Novel treatment concepts in Hodgkin lymphoma.J Intern Med2017;281:247-60

[7]

Glimelius I,Jerkeman M.Long-term survival in young and middle-aged Hodgkin lymphoma patients in Sweden 1992-2009-trends in cure proportions by clinical characteristics.Am J Hematol2015;90:1128-34

[8]

Ng AK.Hodgkin lymphoma: late effects of treatment and guidelines for surveillance.Semin Hematol2016;53:209-15

[9]

Björkholm M,Eloranta S,Glimelius I.Greater attention should be paid to developing therapies for elderly patients with Hodgkin lymphoma-A population-based study from Sweden.Eur J Haematol2018;101:106-14

[10]

Glimelius I,Ekberg S,Neovius M.Increased healthcare use up to 10 years among relapse-free Hodgkin lymphoma survivors in the era of intensified chemotherapy and limited radiotherapy.Am J Hematol2017;92:251-8

[11]

Glimelius I,Rostgaard K.Distribution of hospital care among pediatric and young adult Hodgkin lymphoma survivors-A population-based cohort study from Sweden and Denmark.Cancer Med2019;8:4918-27 PMCID:PMC6712477

[12]

Carbone A,Carlo-Stella C.Are EBV-related and EBV-unrelated Hodgkin lymphomas different with regard to susceptibility to checkpoint blockade?.Blood2018;132:17-22

[13]

Swerdlow SH,Pileri SA.The 2016 revision of the World Health Organization classification of lymphoid neoplasms.Blood2016;127:2375-90 PMCID:PMC4874220

[14]

Stein H,Pileri SA,Poppema S. Classical Hodgkin lymphoma, introduction, In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon, France: International Agency for Research on Cancer; 2008. p. 326-9.

[15]

Correa P.Epidemiologic patterns of Hodgkin’s disease.Int J Cancer1971;8:192-201

[16]

Cozen W,Mack TM.The epidemiology of Hodgkin lymphoma. In: Hudnall S, Küppers R, editors. Precision molecular pathology of Hodgkin lymphoma. Springer International Publishing; 2017. p. 157-96.

[17]

Hjalgrim H,Rostgaard K.Changing patterns of Hodgkin lymphoma incidence in Singapore.Int J Cancer2008;123:716-9

[18]

Macmahons B.Epidemiological evidence on the nature of Hodgkin’s disease.Cancer1957;10:1045-54

[19]

MacMahon B.Epidemiology of Hodgkin’s disease.Cancer Res1966;26:1189-201

[20]

Cozen W,Mack TM.Risk patterns of Hodgkin’s disease in Los Angeles vary by cell type.Cancer Epidemiol Biomarkers Prev1992;1:261-8

[21]

Glaser SL,Stewart SL.Epstein-Barr virus-associated Hodgkin’s disease: epidemiologic characteristics in international data.Int J Cancer1997;70:375-82

[22]

Gutensohn N.Epidemiology of Hodgkin’s disease in the young.Int J Cancer1977;19:595-604

[23]

Newell GR.Etiology of multiple sclerosis and Hodgkin’s disease.Am J Epidemiol1970;91:119-22

[24]

Hjalgrim H.On the aetiology of Hodgkin lymphoma.Dan Med J2012;59:B4485

[25]

Epstein M,Barr Y.Virus particles in cultured lymphoblasts from Burkitt’s lymphoma.Lancet1964;283:702-3

[26]

Rostgaard K,Jarrett R.Primary Epstein-Barr virus infection with and without infectious mononucleosis.PLoS One2019;14:e0226436 PMCID:PMC6917282

[27]

Thorley-Lawson DA.Epstein-Barr virus: exploiting the immune system.Nat Rev Immunol2001;1:75-82

[28]

Poppema S,Torensma R.Lymphadenopathy morphologically consistent with Hodgkin’s disease associated with Epstein-Barr virus infection.Am J Clin Pathol1985;84:385-90

[29]

Weiss LM,Warnke RA.Epstein-Barr viral DNA in tissues of Hodgkin’s disease.Am J Pathology1987;129:86-91 PMCID:PMC1899692

[30]

Anagnostopoulos I,Niedobitek G.Demonstration of monoclonal EBV genomes in Hodgkin’s disease and Ki-1-positive anaplastic large cell lymphoma by combined Southern blot and in situ hybridization.Blood1989;74:810-6

[31]

Weiss LM,Warnke RA.Detection of Epstein-Barr viral genomes in Reed-Sternberg cells of Hodgkin’s disease.N Engl J Med1989;320:502-6

[32]

Lee JH,Choi JW.Prevalence and prognostic significance of Epstein-Barr virus infection in classical Hodgkin’s lymphoma: a meta-analysis.Arch Med Res2014;45:417-31

[33]

Levin LI,Ambinder RF.Atypical prediagnosis Epstein-Barr virus serology restricted to EBV-positive Hodgkin lymphoma.Blood2012;120:3750-5 PMCID:PMC3488887

[34]

Diepstra A,Vellenga E.Association with HLA class I in Epstein-Barr-virus-positive and with HLA class III in Epstein-Barr-virus-negative Hodgkin’s lymphoma.Lancet2005;365:2216-24

[35]

Enciso-Mora V,Ma Y.A genome-wide association study of Hodgkin’s lymphoma identifies new susceptibility loci at 2p16.1 (REL), 8q24.21 and 10p14 (GATA3).Nat Genet2010;42:1126-30 PMCID:PMC4268499

[36]

Urayama KY,Hjalgrim H.Genome-wide association study of classical Hodgkin lymphoma and Epstein-Barr virus status-defined subgroups.J Natl Cancer Inst2012;104:240-53 PMCID:PMC3274508

[37]

Cozen W,Li D.A meta-analysis of Hodgkin lymphoma reveals 19p13.3 TCF3 as a novel susceptibility locus.Nat Commun2014;5:3856 PMCID:PMC4055950

[38]

Delahaye-Sourdeix M,Gaborieau V.A novel risk locus at 6p21.3 for Epstein-Barr virus-positive Hodgkin lymphoma.Cancer Epidemiol Biomarkers Prev2015;24:1838-43

[39]

Khankhanian P,Himmelstein DS.Meta-analysis of genome-wide association studies reveals genetic overlap between Hodgkin lymphoma and multiple sclerosis.Int J Epidemiol2016;45:728-40 PMCID:PMC5005944

[40]

Jarrett RF.Viruses and Hodgkin’s lymphoma.Ann Oncol2002;13 Suppl 1:23-9

[41]

Desai S.Future directions in Hodgkin lymphoma: checkpoint inhibitors and beyond.Leuk Lymphoma2021;62:1795-804

[42]

Cheson BD,Barrington SF.Alliance, Australasian Leukaemia and Lymphoma Group, Eastern Cooperative Oncology Group, European Mantle Cell Lymphoma Consortium, Italian Lymphoma Foundation, European Organisation for Research, Treatment of Cancer/Dutch Hemato-Oncology Group, Grupo Español de Médula Ósea, German High-Grade Lymphoma Study Group, German Hodgkin’s Study Group, Japanese Lymphorra Study Group, Lymphoma Study Association, NCIC Clinical Trials Group, Nordic Lymphoma Study Group, Nordic Lymphoma Study Group, United Kingdom National Cancer Research InstituteRecommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification.J Clin Oncol2014;32:3059-68 PMCID:PMC4979083

[43]

Ansell SM.Hodgkin lymphoma: 2016 update on diagnosis, risk-stratification, and management.Am J Hematol2016;91:434-42

[44]

Bröckelmann PJ. Prognostic Factors. In: Engert A, Younes A, editors. Hodgkin lymphoma - a comprehensive review. Cham, Switzerland: Springer Nature Switzerland AG; 2020. p. 145-70.

[45]

Allemani C,De Angelis R,Coebergh JW.EUROCARE Working GroupHodgkin disease survival in Europe and the U.S.: prognostic significance of morphologic groups.Cancer2006;107:352-60

[46]

Keegan TH,Clarke CA.Epstein-Barr virus as a marker of survival after Hodgkin’s lymphoma: a population-based study.J Clin Oncol2005;23:7604-13

[47]

Jarrett RF,White J.Scotland and Newcastle Epidemiology of Hodgkin Disease Study GroupImpact of tumor Epstein-Barr virus status on presenting features and outcome in age-defined subgroups of patients with classic Hodgkin lymphoma: a population-based study.Blood2005;106:2444-51

[48]

Diepstra A,Schaapveld M.Latent Epstein-Barr virus infection of tumor cells in classical Hodgkin’s lymphoma predicts adverse outcome in older adult patients.J Clin Oncol2009;27:3815-21

[49]

Küppers R,Zhao M.Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development.Proc Natl Acad Sci U S A1994;91:10962-6 PMCID:PMC45146

[50]

Kanzler H,Hansmann ML.Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells.J Exp Med1996;184:1495-505 PMCID:PMC2192840

[51]

Marafioti T,Foss HD.Hodgkin and reed-sternberg cells represent an expansion of a single clone originating from a germinal center B-cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription.Blood2000;95:1443-50

[52]

Mancao C,Jungnickel B.Rescue of “crippled” germinal center B cells from apoptosis by Epstein-Barr virus.Blood2005;106:4339-44 PMCID:PMC1895254

[53]

Jarrett RF,Murray PG.The role of viruses in the genesis of Hodgkin lymphoma. In: Engert A, Younes A, editors. Hodgkin lymphoma - a comprehensive review. Cham: Springer; 2018. p. 25-46.

[54]

Rosenwald A.Pathology and molecular pathology of Hodgkin lymphoma. In: Engert A, Younes A, editors. Hodgkin lymphoma - a comprehensive overview, Cham: Springer; 2020. p. 47-68.

[55]

Murray PG.An etiological role for the Epstein-Barr virus in the pathogenesis of classical Hodgkin lymphoma.Blood2019;134:591-6

[56]

Murray P.Role of EBV in classical Hodgkin lymphoma. In: Hudnall SD, Küppers R, editors. Precision molecular pathology of Hodgkin lymphoma. Cham: Springer; 2018. p. 91-110.

[57]

Ambinder RF.Gammaherpesviruses and “Hit-and-Run” oncogenesis.Am J Pathol2000;156:1-3 PMCID:PMC1868625

[58]

Visser L,Poppema S,Diepstra A.Microenvironment, cross-talk, and immune escape mechanisms. In: Engert A, Younes A, editors. Hodgkin lymphoma - a comprehensive overview. Cham: Springer; 2020. p. 69-86.

[59]

Chetaille B,Finetti P.Molecular profiling of classical Hodgkin lymphoma tissues uncovers variations in the tumor microenvironment and correlations with EBV infection and outcome.Blood2009;113:2765-3775

[60]

Ghosh SK,Williams RM.Histone deacetylase inhibitors are potent inducers of gene expression in latent EBV and sensitize lymphoma cells to nucleoside antiviral agents.Blood2012;119:1008-17 PMCID:PMC3271713

[61]

Porcu P,Alpdogan O.Oral nanatinostat (Nstat) and valganciclovir (VGCV) in patients with recurrent Epstein-Barr virus (EBV)-positive lymphomas: initial phase 2 results.Blood2020;136:7-8

[62]

Perrine SP,Small T.A phase 1/2 trial of arginine butyrate and ganciclovir in patients with Epstein-Barr virus-associated lymphoid malignancies.Blood2007;109:2571-8 PMCID:PMC1852196

[63]

Nijland M,Visser L.HLA dependent immune escape mechanisms in B-cell lymphomas: implications for immune checkpoint inhibitor therapy?.Oncoimmunology2017;6:e1295202 PMCID:PMC5414870

[64]

Bollard CM,Torrano V.Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein-Barr virus latent membrane proteins.J Clin Oncol2014;32:798-808 PMCID:PMC3940538

[65]

Ho C,Levine BL.Adoptive T-cell therapy for Hodgkin lymphoma.Blood Adv2021;5:4291-302

[66]

Bollard CM,Cruz CR.Tumor-specific T-cells engineered to overcome tumor immune evasion induce clinical responses in patients with relapsed hodgkin lymphoma.J Clin Oncol2018;36:1128-39 PMCID:PMC5891126

[67]

Heslop HE,Rooney CM.Adoptive T-cell therapy for Epstein-Barr virus-related lymphomas.J Clin Oncol2021;39:514-24 PMCID:PMC8462582

[68]

Rouce RH,Sharma S.Rapidly-generated EBV-specific T cells (EBVST-cells) to treat type 2 latency lymphoma.Blood2016;128:2990

[69]

Curran KJ,Kernan NA.Durable remission following “off-the-shelf” chimeric antigen receptor (CAR) T-cells in patients with relapse/refractory (R/R) B-cell malignancies.Biol Blood Marrow Tr2020;26:S89

[70]

Dalton T,Pankov D.Epigenetic reprogramming sensitizes immunologically silent EBV+ lymphomas to virus-directed immunotherapy.Blood2020;135:1870-81 PMCID:PMC7243148

[71]

Choi IK,Ke Q.Mechanism of EBV inducing anti-tumour immunity and its therapeutic use.Nature2021;590:157-62 PMCID:PMC7864874

[72]

Mottok A.Biology of classical Hodgkin lymphoma: implications for prognosis and novel therapies.Blood2018;131:1654-65

[73]

Kamper P,Hamilton-Dutoit S,Nyengaard JR.Tumor-infiltrating macrophages correlate with adverse prognosis and Epstein-Barr virus status in classical Hodgkin’s lymphoma.Haematologica2011;96:269-76 PMCID:PMC3031695

[74]

Guo B,Tan X.Meta-analysis of the prognostic and clinical value of tumor-associated macrophages in adult classical Hodgkin lymphoma.BMC Med2016;14:159 PMCID:PMC5066288

[75]

Vari F,Keane C.Immune evasion via PD-1/PD-L1 on NK cells and monocyte/macrophages is more prominent in Hodgkin lymphoma than DLBCL.Blood2018;131:1809-19 PMCID:PMC5922274

[76]

Advani RH,Bartlett NL.Brentuximab vedotin in combination with nivolumab in relapsed or refractory Hodgkin lymphoma: 3-year study results.Blood2021;138:427-38

[77]

Reinke S,Iaccarino I.Tumor and microenvironment response but no cytotoxic T-cell activation in classic Hodgkin lymphoma treated with anti-PD1.Blood2020;136:2851-63

[78]

Cader FZ,Goh WL.A peripheral immune signature of responsiveness to PD-1 blockade in patients with classical Hodgkin lymphoma.Nat Med2020;26:1468-79

[79]

Veldman J,Berg AVD.Primary and acquired resistance mechanisms to immune checkpoint inhibition in Hodgkin lymphoma.Cancer Treat Rev2020;82:101931

[80]

Diepstra A,Boot M.HLA-G protein expression as a potential immune escape mechanism in classical Hodgkin’s lymphoma.Tissue Antigens2008;71:219-26

[81]

Bartlett NL,Domingo-Domenech E.A phase 1b study of AFM13 in combination with pembrolizumab in patients with relapsed or refractory Hodgkin lymphoma.Blood2020;136:2401-9 PMCID:PMC7685206

[82]

Csizmar CM.Engaging the innate and adaptive antitumor immune response in lymphoma.Int J Mol Sci2021;22:3302 PMCID:PMC8038124

[83]

Chan TSY,Khong PL.Low-dose pembrolizumab and nivolumab were efficacious and safe in relapsed and refractory classical Hodgkin lymphoma: experience in a resource-constrained setting.Hematol Oncol2020;38:726-36

PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

/