The endocrine and epigenetic impact of persistent cow milk consumption on prostate carcinogenesis

Bodo C. Melnik , Swen Malte John , Ralf Weiskirchen , Gerd Schmitz

Journal of Translational Genetics and Genomics ›› 2022, Vol. 6 ›› Issue (1) : 1 -45.

PDF
Journal of Translational Genetics and Genomics ›› 2022, Vol. 6 ›› Issue (1) :1 -45. DOI: 10.20517/jtgg.2021.37
review-article

The endocrine and epigenetic impact of persistent cow milk consumption on prostate carcinogenesis

Author information +
History +
PDF

Abstract

This review analyzes the potential impact of milk-induced signal transduction on the pathogenesis of prostate cancer (PCa). Articles in PubMed until November 2021 reporting on milk intake and PCa were reviewed. Epidemiological studies identified commercial cow milk consumption as a potential risk factor of PCa. The potential impact of cow milk consumption on the pathogenesis of PCa may already begin during fetal and pubertal prostate growth, critical windows with increased vulnerability. Milk is a promotor of growth and anabolism via activating insulin-like growth factor-1 (IGF-1)/phosphatidylinositol-3 kinase (PI3K)/AKT/mechanistic target of rapamycin complex 1 (mTORC1) signaling. Estrogens, major steroid hormone components of commercial milk of persistently pregnant dairy cows, activate IGF-1 and mTORC1. Milk-derived signaling synergizes with common driver mutations of the PI3K/AKT/mTORC1 signaling pathway that intersect with androgen receptor, MFG-E8, MAPK, RUNX2, MDM4, TP53, and WNT signaling, respectively. Potential exogenously induced drivers of PCa are milk-induced elevations of growth hormone, IGF-1, MFG-E8, estrogens, phytanic acid, and aflatoxins, as well as milk exosome-derived oncogenic microRNAs including miR-148a, miR-21, and miR-29b. Commercial cow milk intake, especially the consumption of pasteurized milk, which represents the closest replica of native milk, activates PI3K-AKT-mTORC1 signaling via cow milk’s endocrine and epigenetic modes of action. Vulnerable periods for adverse nutrigenomic impacts on prostate health appear to be the fetal and pubertal growth periods, potentially priming the initiation of PCa. Cow milk-mediated overactivation of PI3K-AKT-mTORC1 signaling synergizes with the most common genetic deviations in PCa, promoting PCa initiation, progression, and early recurrence.

Keywords

Aflatoxins / branched-chain amino acids / estrogens / exosomes / growth hormone / IGF-1 / microRNAs / milk / mTORC1 / prostate cancer

Cite this article

Download citation ▾
Bodo C. Melnik, Swen Malte John, Ralf Weiskirchen, Gerd Schmitz. The endocrine and epigenetic impact of persistent cow milk consumption on prostate carcinogenesis. Journal of Translational Genetics and Genomics, 2022, 6(1): 1-45 DOI:10.20517/jtgg.2021.37

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

FerlayJ,LamF. Global cancer observatory: cancer today. Lyon, France: International Agency for Research on Cancer. Available from: https://gco.iarc.fr/today/data/factsheets/cancers/27-Prostate-fact-sheet.pdf [Last accessed on 17 Dec 2021]

[2]

CulpMB,EfstathiouJA,JemalA.Recent global patterns in prostate cancer incidence and mortality rates.Eur Urol2020;77:38-52

[3]

SungH,SiegelRL.Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin2021;71:209-49

[4]

GuptaS,SainiAK,SinhaK.Prostate cancer: how young is too young?.Curr Urol2017;9:212-5 PMCID:PMC5385860

[5]

LinPH,FreedlandSJ.Nutrition, dietary interventions and prostate cancer: the latest evidence.BMC Med2015;13:3 PMCID:PMC4286914

[6]

WilsonKM.Diet and lifestyle in prostate cancer.Adv Exp Med Biol2019;1210:1-27

[7]

MatsushitaM,NonomuraN.Influence of diet and nutrition on prostate cancer.Int J Mol Sci2020;21:1447 PMCID:PMC7073095

[8]

LinPH,FreedlandSJ.An update of research evidence on nutrition and prostate cancer.Urol Oncol2019;37:387-401

[9]

LeslieSW,SajjadH.Prostate cancer. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021.

[10]

LanT,ColditzGA.Adolescent dairy product and calcium intake in relation to later prostate cancer risk and mortality in the NIH-AARP Diet and Health Study.Cancer Causes Control2020;31:891-904 PMCID:PMC7482419

[11]

GanmaaD,QinL,TakedaM.The experience of Japan as a clue to the etiology of testicular and prostatic cancers.Med Hypotheses2003;60:724-30

[12]

QinLQ,WangPY,HoshiK.Milk consumption is a risk factor for prostate cancer: meta-analysis of case-control studies.Nutr Cancer2004;48:22-7

[13]

QinLQ,WangPY,HoshiK.Milk consumption is a risk factor for prostate cancer in Western countries: evidence from cohort studies.Asia Pac J Clin Nutr2007;16:467-76

[14]

SargsyanA.Milk consumption and prostate cancer: a systematic review.World J Mens Health2021;39:419-28 PMCID:PMC8255404

[15]

Our world in data. Available from: https://ourworldindata.org/grapher/per-capita-milk-consumption [Last accessed on 17 Dec 2021]

[16]

Milchindustrie-Verband e.V: Deutschland: Pro-Kopfverbrauch von Milchprodukten. Available from: https://milchindustrie.de/wp-content/uploads/2020/04/ProkopfDeutschland_Mopro_2013-2019x_Homepage.pdf [Last accessed on 17 Dec 2021]

[17]

RidderM. Statista: per capita consumption of milk in Sweden 2008-2018. Available from: https://www.statista.com/statistics/557618/per-capita-consumption-of-milk-in-sweden/ [Last accessed on 17 Dec 2021]

[18]

Statista. Per capita consumption of fluid milk products in the United States from 2000 to 2020 (in pounds)*. Available from: https://www.statista.com/statistics/184240/us-per-capita-consumption-of-fluid-milk- products/ [Last accessed on 17 Dec 2021]

[19]

Statista. Per capita milk and dairy product consumption in China from 2013 to 2020. Available from: https://www.statista.com/statistics/1098497/china-per-capita-milk-dairy-consumption/ [Last accessed on 17 Dec 2021]

[20]

MelnikBC.Milk-a nutrient system of mammalian evolution promoting mTORC1-dependent translation.Int J Mol Sci2015;16:17048-87 PMCID:PMC4581184

[21]

MelnikBC,Carrera-BastosP.The impact of cow's milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer.Nutr Metab (Lond)2012;9:74 PMCID:PMC3499189

[22]

ShorningBY,SmalleyMJ.The PI3K-AKT-mTOR pathway and prostate cancer: at the crossroads of AR, MAPK, and WNT signaling.Int J Mol Sci2020;21:4507 PMCID:PMC7350257

[23]

WangG,SpringDJ.Genetics and biology of prostate cancer.Genes Dev2018;32:1105-40 PMCID:PMC6120714

[24]

CarverBS,WongvipatJ.Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer.Cancer Cell2011;19:575-86 PMCID:PMC3142785

[25]

CrumbakerM,JoshuaAM.AR signaling and the PI3K pathway in prostate cancer.Cancers (Basel)2017;9:34 PMCID:PMC5406709

[26]

PearsonHB,MenielVS.Identification of Pik3ca mutation as a genetic driver of prostate cancer that cooperates with pten loss to accelerate progression and castration-resistant growth.Cancer Discov2018;8:764-79

[27]

ChenH,WuX.The PI3K/AKT pathway in the pathogenesis of prostate cancer.Front Biosci (Landmark Ed)2016;21:1084-91

[28]

TurnhamDJ,DassMS,PearsonHB.The PTEN conundrum: how to target PTEN-deficient prostate cancer.Cells2020;9:2342 PMCID:PMC7690430

[29]

CairnsP,HalachmiS.Frequent inactivation of PTEN/MMAC1 in primary prostate cancer.Cancer Res1997;57:4997-5000

[30]

SuzukiH,NusskernDR.Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues.Cancer Res1998;58:204-9

[31]

WangSI,IttmannM.Homozygous deletion of the PTEN tumor suppressor gene in a subset of prostate adenocarcinomas.Clin Cancer Res1998;4:811-5

[32]

RudgeSA.Phosphatidylinositolphosphate phosphatase activities and cancer.J Lipid Res2016;57:176-92 PMCID:PMC4727428

[33]

JamaspishviliT,RossAE.Clinical implications of PTEN loss in prostate cancer.Nat Rev Urol2018;15:222-34 PMCID:PMC7472658

[34]

GeybelsMS,WrightJL.PTEN loss is associated with prostate cancer recurrence and alterations in tumor DNA methylation profiles.Oncotarget2017;8:84338-48 PMCID:PMC5663600

[35]

McMenaminME,PereraS,LodaM.Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage.Cancer Res1999;59:4291-6

[36]

TaylorBS,HieronymusH.Integrative genomic profiling of human prostate cancer.Cancer Cell2010;18:11-22 PMCID:PMC3198787

[37]

GrassoCS,RobinsonDR.The mutational landscape of lethal castration-resistant prostate cancer.Nature2012;487:239-43 PMCID:PMC3396711

[38]

RobinsonD,WuYM.Integrative clinical genomics of advanced prostate cancer.Cell2015;161:1215-28 PMCID:PMC4484602

[39]

ArmeniaJ,LiuD.PCF/SU2C International Prostate Cancer Dream TeamThe long tail of oncogenic drivers in prostate cancer.Nat Genet2018;50:645-51 PMCID:PMC6107367

[40]

AbidaW,HellerG.Genomic correlates of clinical outcome in advanced prostate cancer.Proc Natl Acad Sci U S A2019;116:11428-36 PMCID:PMC6561293

[41]

LiuP,GanL,HuangH.A transcription-independent function of FOXO1 in inhibition of androgen-independent activation of the androgen receptor in prostate cancer cells.Cancer Res2008;68:10290-9

[42]

MaQ,LiP.FoxO1 mediates PTEN suppression of androgen receptor N- and C-terminal interactions and coactivator recruitment.Mol Endocrinol2009;23:213-25 PMCID:PMC2646622

[43]

BohrerLR,ZhongJ.FOXO1 binds to the TAU5 motif and inhibits constitutively active androgen receptor splice variants.Prostate2013;73:1017-27 PMCID:PMC3915545

[44]

ZhaoY,HuangH.Modulation of androgen receptor by FOXA1 and FOXO1 factors in prostate cancer.Int J Biol Sci2014;10:614-9 PMCID:PMC4062954

[45]

YanY.Interplay among PI3K/AKT, PTEN/FOXO and AR signaling in prostate cancer.Adv Exp Med Biol2019;1210:319-31

[46]

WangQ,NgC.Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression.Cancer Res2011;71:7525-36

[47]

MillwardDJ,ToméD.Protein quality assessment: impact of expanding understanding of protein and amino acid needs for optimal health.Am J Clin Nutr2008;87:1576S-81S

[48]

SouciSW,KrautH. Food composition and nutrition tables. 8th revised and extended edition. Volume XXXII. Stuttgart, Germany: MedPharm; 2016. p. 1263.

[49]

SalisburyTB.The regulation and function of the L-type amino acid transporter 1 (LAT1) in cancer.Int J Mol Sci2018;19:2373 PMCID:PMC6121554

[50]

ZhangBK,BaileyCG,HolstJ.EGF-activated PI3K/Akt signalling coordinates leucine uptake by regulating LAT3 expression in prostate cancer.Cell Commun Signal2019;17:83 PMCID:PMC6659227

[51]

OtsukiH,YamagaT,SuehiroJI.Prostate cancer cells in different androgen receptor status employ different leucine transporters.Prostate2017;77:222-33

[52]

StrmiskaV,EckschlagerT.Prostate cancer-specific hallmarks of amino acids metabolism: towards a paradigm of precision medicine.Biochim Biophys Acta Rev Cancer2019;1871:248-58

[53]

ZhangH,ZhengL.FOXO1 inhibits Runx2 transcriptional activity and prostate cancer cell migration and invasion.Cancer Res2011;71:3257-67 PMCID:PMC3108023

[54]

GeC,LiY.Role of Runx2 phosphorylation in prostate cancer and association with metastatic disease.Oncogene2016;35:366-76 PMCID:PMC4603996

[55]

AkechJ,BedardK.Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone osteolysis and osteoblastic metastatic lesions.Oncogene2010;29:811-21 PMCID:PMC2820596

[56]

KimB,JungS.A CTGF-RUNX2-RANKL axis in breast and prostate cancer cells promotes tumor progression in bone.J Bone Miner Res2020;35:155-66

[57]

HsiehAC,EdlindMP.The translational landscape of mTOR signalling steers cancer initiation and metastasis.Nature2012;485:55-61 PMCID:PMC3663483

[58]

EdlindMP.PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance.Asian J Androl2014;16:378-86 PMCID:PMC4023363

[59]

Zabala-letonaA,Martín-martínN.mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer.Nature2017;547:109-13 PMCID:PMC5505479

[60]

Audet-WalshÉ,YeeT.SREBF1 activity is regulated by an AR/mTOR nuclear axis in prostate cancer.Mol Cancer Res2018;16:1396-405

[61]

HanY,ZhangD.Mechanosensitive ion channel Piezo1 promotes prostate cancer development through the activation of the Akt/mTOR pathway and acceleration of cell cycle.Int J Oncol2019;55:629-44 PMCID:PMC6685593

[62]

BinalZ,KızılayF,AltayB.Cross-talk between ribosome biogenesis, translation, and mTOR in CD133+ 4/CD44+ prostate cancer stem cells.Clin Transl Oncol2020;22:1040-8

[63]

NgolloM,Karsli-CeppiogluS.Epigenetic modifications in prostate cancer.Epigenomics2014;6:415-26

[64]

LiaoY.Epigenetic regulation of prostate cancer: the theories and the clinical implications.Asian J Androl2019;21:279-90 PMCID:PMC6498736

[65]

ZhuKC,XuXL.MicroRNAs in androgen-dependent PCa.Front Biosci (Landmark Ed)2013;18:748-55

[66]

EringyteI,PowellSM,FletcherCE.Coordinated AR and microRNA regulation in prostate cancer.Asian J Urol2020;7:233-50 PMCID:PMC7385519

[67]

KanwalR,LiuX,GuptaS.MicroRNAs in prostate cancer: Functional role as biomarkers.Cancer Lett2017;407:9-20

[68]

VermaS,ShuklaGC,GuptaS.Integrated analysis of miRNA landscape and cellular networking pathways in stage-specific prostate cancer.PLoS One2019;14:e0224071 PMCID:PMC6874298

[69]

FoliniM,LongoniN.miR-21: an oncomir on strike in prostate cancer.Mol Cancer2010;9:12 PMCID:PMC2823650

[70]

RibasJ.The transcriptional regulation of miR-21, its multiple transcripts, and their implication in prostate cancer.Cell Cycle2010;9:923-9 PMCID:PMC3462654

[71]

YangY,ShaoZQ.miR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation and invasion: an experimental study.Asian Pac J Trop Med2017;10:87-91

[72]

LuZ,StribinskisV.MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene.Oncogene2008;27:4373-9

[73]

GoH,KimPJ.MicroRNA-21 plays an oncogenic role by targeting FOXO1 and activating the PI3K/AKT pathway in diffuse large B-cell lymphoma.Oncotarget2015;6:15035-49 PMCID:PMC4558134

[74]

SongW,WangL.Modulation of FoxO1 expression by miR-21 to promote growth of pancreatic ductal adenocarcinoma.Cell Physiol Biochem2015;35:184-90

[75]

ShuklaS,MaclennanGT,GuptaS.Deregulation of FOXO3A during prostate cancer progression.Int J Oncol2009;34:1613-20 PMCID:PMC2683383

[76]

WangK.Foxo3a regulates apoptosis by negatively targeting miR-21.J Biol Chem2010;285:16958-66 PMCID:PMC2878079

[77]

RibasJ,HaffnerM.miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth.Cancer Res2009;69:7165-9 PMCID:PMC2861586

[78]

FojL,SerraM.Exosomal and non-exosomal urinary miRNAs in prostate cancer detection and prognosis.Prostate2017;77:573-83

[79]

ShinS,JungSH.Urinary exosome microRNA signatures as a noninvasive prognostic biomarker for prostate cancer.NPJ Genom Med2021;6:45 PMCID:PMC8196022

[80]

DanartoR,UmbasR.Urine miR-21-5p and miR-200c-3p as potential non-invasive biomarkers in patients with prostate cancer.Turk J Urol2020;46:26-30 PMCID:PMC6944428

[81]

GhorbanmehrN,KorschingE,EinollahiB.miR-21-5p, miR-141-3p, and miR-205-5p levels in urine-promising biomarkers for the identification of prostate and bladder cancer.Prostate2019;79:88-95

[82]

ZhouH.MicroRNA-21 and microRNA-30c as diagnostic biomarkers for prostate cancer: a meta-analysis.Cancer Manag Res2019;11:2039-50 PMCID:PMC6411321

[83]

HuangW,CenS,ChenX.High-level expression of microRNA-21 in peripheral blood mononuclear cells is a diagnostic and prognostic marker in prostate cancer.Genet Test Mol Biomarkers2015;19:469-75

[84]

ZedanAH,HansenTF.Heterogeneity of miRNA expression in localized prostate cancer with clinicopathological correlations.PLoS One2017;12:e0179113 PMCID:PMC5476257

[85]

SharmaN.The microRNA signatures: aberrantly expressed miRNAs in prostate cancer.Clin Transl Oncol2019;21:126-44

[86]

ArisanED,FreitasIL.Upregulated Wnt-11 and miR-21 expression trigger epithelial mesenchymal transition in aggressive prostate cancer cells.Biology (Basel)2020;9:52 PMCID:PMC7150874

[87]

GuanC,WangS.Upregulation of microRNA-21 promotes tumorigenesis of prostate cancer cells by targeting KLF5.Cancer Biol Ther2019;20:1149-61 PMCID:PMC6606003

[88]

PfefferSR,PfefferLM.The role of miR-21 in cancer.Drug Dev Res2015;76:270-7

[89]

MishraS,HuangTH,SunLZ.MicroRNA-21 inhibits p57Kip2 expression in prostate cancer.Mol Cancer2014;13:212 PMCID:PMC4168249

[90]

LiT,ShaJ,HuangY.MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells.Biochem Biophys Res Commun2009;383:280-5

[91]

MishraS,GowdaPS.Androgen receptor and microRNA-21 axis downregulates transforming growth factor beta receptor II (TGFBR2) expression in prostate cancer.Oncogene2014;33:4097-106 PMCID:PMC3962713

[92]

YangCH,SimsM.The oncogenic microRNA-21 inhibits the tumor suppressive activity of FBXO11 to promote tumorigenesis.J Biol Chem2015;290:6037-46 PMCID:PMC4358246

[93]

ReisST,AntunesAA.miR-21 may acts as an oncomir by targeting RECK, a matrix metalloproteinase regulator, in prostate cancer.BMC Urol2012;12:14 PMCID:PMC3431982

[94]

PorzyckiP,SemikM.Combination of three miRNA (miR-141, miR-21, and miR-375) as potential diagnostic tool for prostate cancer recognition.Int Urol Nephrol2018;50:1619-26 PMCID:PMC6133127

[95]

HatanoK.Extracellular vesicles in prostate cancer: a narrative review.Transl Androl Urol2021;10:1890-907 PMCID:PMC8100827

[96]

SzczyrbaJ,WachS.The microRNA profile of prostate carcinoma obtained by deep sequencing.Mol Cancer Res2010;8:529-38

[97]

DybosSA,HalgunsetJ.Increased levels of serum miR-148a-3p are associated with prostate cancer.APMIS2018;126:722-31

[98]

GurbuzV,BilenCY.miR-148a, miR-152 and miR-200b promote prostate cancer metastasis by targeting DNMT1 and PTEN expression.Oncol Lett2021;22:805 PMCID:PMC8488332

[99]

MurataT,KatayamaS.miR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression.Prostate Cancer Prostatic Dis2010;13:356-61

[100]

JalavaSE,LatonenL.Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer.Oncogene2012;31:4460-71

[101]

HamiltonMP,BaderDA.The landscape of microRNA targeting in prostate cancer defined by AGO-PAR-CLIP.Neoplasia2016;18:356-70 PMCID:PMC4909715

[102]

ZhuZ,JohnsonC.PI3K is negatively regulated by PIK3IP1, a novel p110 interacting protein.Biochem Biophys Res Commun2007;358:66-72 PMCID:PMC1978172

[103]

ValdezCD,DaignaultS,DayML.The E2F1/DNMT1 axis is associated with the development of AR negative castration resistant prostate cancer.Prostate2013;73:1776-85

[104]

SenguptaD,PatraSK.Antagonistic activities of miR-148a and DNMT1: ectopic expression of miR-148a impairs DNMT1 mRNA and dwindle cell proliferation and survival.Gene2018;660:68-79

[105]

LeeE,YumotoK.DNMT1 regulates epithelial-mesenchymal transition and cancer stem cells, which promotes prostate cancer metastasis.Neoplasia2016;18:553-66 PMCID:PMC5031902

[106]

HeH,ZhuJ.miR-148a-3p promotes rabbit preadipocyte differentiation by targeting PTEN.In Vitro Cell Dev Biol Anim2018;54:241-9

[107]

QingjuanL,WeiZ.miR-148a-3p overexpression contributes to glomerular cell proliferation by targeting PTEN in lupus nephritis.Am J Physiol Cell Physiol2016;310:C470-8

[108]

JinX,ZhaoM.MicroRNA-148a regulates the proliferation and differentiation of ovine preadipocytes by targeting PTEN.Animals (Basel)2021;11:820 PMCID:PMC7998426

[109]

PanW,YuanM.MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1.J Immunol2010;184:6773-81

[110]

YangA,GaoY.Reciprocal regulation between miR-148a/152 and DNA methyltransferase 1 is associated with hyperhomocysteinemia-accelerated atherosclerosis.DNA Cell Biol2017;36:462-74

[111]

KurodaA,TodorovI.Insulin gene expression is regulated by DNA methylation.PLoS One2009;4:e6953 PMCID:PMC2735004

[112]

OuniM,BelotMP,FradinD.The IGF1 P2 promoter is an epigenetic QTL for circulating IGF1 and human growth.Clin Epigenetics2015;7:22 PMCID:PMC4363053

[113]

OuniM,RothenbuhlerA,BougnèresP.Higher methylation of the IGF1 P2 promoter is associated with idiopathic short stature.Clin Endocrinol (Oxf)2016;84:216-21

[114]

ChenJ,ZhuH.Curcumin-induced promoter hypermethylation of the mammalian target of rapamycin gene in multiple myeloma cells.Oncol Lett2019;17:1108-14 PMCID:PMC6312997

[115]

RockCL.Milk and the risk and progression of cancer.Nestle Nutr Workshop Ser Pediatr Program2011;67:173-85

[116]

ManuelianCL,VisentinG,CassandroM.Mineral composition of cow milk from multibreed herds.Anim Sci J2018;89:1622-7

[117]

ChanJM,MaJ,GazianoJM.Dairy products, calcium, and prostate cancer risk in the Physicians' Health Study.Am J Clin Nutr2001;74:549-54

[118]

GaoX,TuckerKL.Prospective studies of dairy product and calcium intakes and prostate cancer risk: a meta-analysis.J Natl Cancer Inst2005;97:1768-77

[119]

RodriguezC,MondulAM.Calcium, dairy products, and risk of prostate cancer in a prospective cohort of United States men.Cancer Epidemiol Biomarkers Prev2003;12:597-603

[120]

HayesRB,GridleyG.Dietary factors and risks for prostate cancer among blacks and whites in the United States.Cancer Epidemiol Biomarkers Prev1999;8:25-34

[121]

BerndtSI,LandisPK.Calcium intake and prostate cancer risk in a long-term aging study: the Baltimore Longitudinal Study of Aging.Urology2002;60:1118-23

[122]

AuneD,ChanDS.Dairy products, calcium, and prostate cancer risk: a systematic review and meta-analysis of cohort studies.Am J Clin Nutr2015;101:87-117

[123]

MalyIV.Fatty acids and calcium regulation in prostate cancer.Nutrients2018;10:788 PMCID:PMC6024573

[124]

MalyIV.Calcium and nuclear signaling in prostate cancer.Int J Mol Sci2018;19:1237 PMCID:PMC5979488

[125]

HarrisonS,HollyJ.Does milk intake promote prostate cancer initiation or progression via effects on insulin-like growth factors (IGFs)?.Cancer Causes Control2017;28:497-528 PMCID:PMC5400803

[126]

MantzorosCS,SignorelloLB,TrichopoulosD.Insulin-like growth factor 1 in relation to prostate cancer and benign prostatic hyperplasia.Br J Cancer1997;76:1115-8 PMCID:PMC2228109

[127]

CohenP,RosenfeldR.Insulin-like growth factor 1 in relation to prostate cancer and benign prostatic hyperplasia.Br J Cancer1998;78:554-6 PMCID:PMC2063105

[128]

WolkA,AnderssonSO.Insulin-like growth factor 1 and prostate cancer risk: a population-based, case-control study.J Natl Cancer Inst1998;90:911-5

[129]

KaplanPJ,CohenP,GreenbergNM.The insulin-like growth factor axis and prostate cancer: lessons from the transgenic adenocarcinoma of mouse prostate (TRAMP) model.Cancer Res1999;59:2203-9

[130]

GiovannucciE.Insulin-like growth factor-I and binding protein-3 and risk of cancer.Horm Res1999;51 Suppl 3:34-41

[131]

KaaksR,SommersbergB.Plasma androgens, IGF-1, body size, and prostate cancer risk: a synthetic review.Prostate Cancer Prostatic Dis2000;3:157-72

[132]

ChokkalingamAP,FillmoreCM.Insulin-like growth factors and prostate cancer: a population-based case-control study in China.Cancer Epidemiol Biomarkers Prev2001;10:421-7

[133]

NickersonT,LorimerD,SawyersCL.In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR).Cancer Res2001;61:6276-80

[134]

ShiR,YuH.Insulin-like growth factor-I and prostate cancer: a meta-analysis.Br J Cancer2001;85:991-6 PMCID:PMC2375097

[135]

WoodsonK,PollakM.Serum insulin-like growth factor I: tumor marker or etiologic factor?.Cancer Res2003;63:3991-4

[136]

RobertsCT.IGF-1 and prostate cancer. IGF-1 and prostate cancer.Novartis Found Symp2004;262:193-9

[137]

RenehanAG,MinderC,ShaletSM.Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis.Lancet2004;363:1346-53

[138]

KruecklSL,EdlundNM.Increased insulin-like growth factor I receptor expression and signaling are components of androgen-independent progression in a lineage-derived prostate cancer progression model.Cancer Res2004;64:8620-9

[139]

StattinP,BiessyC,HallmansG.High levels of circulating insulin-like growth factor-I increase prostate cancer risk: a prospective study in a population-based nonscreened cohort.J Clin Oncol2004;22:3104-12

[140]

PlatzEA,LeitzmannMF,WillettWC.Plasma insulin-like growth factor-1 and binding protein-3 and subsequent risk of prostate cancer in the PSA era.Cancer Causes Control2005;16:255-62

[141]

GennigensC,DrozJP.Insulin-like growth factor (IGF) family and prostate cancer.Crit Rev Oncol Hematol2006;58:124-45

[142]

KawadaM,MasudaT.Insulin-like growth factor I secreted from prostate stromal cells mediates tumor-stromal cell interactions of prostate cancer.Cancer Res2006;66:4419-25

[143]

WuJD,WoodkeL,ColemanI.Interaction of IGF signaling and the androgen receptor in prostate cancer progression.J Cell Biochem2006;99:392-401

[144]

KawadaM,ArakawaM.Transforming growth factor-beta1 modulates tumor-stromal cell interactions of prostate cancer through insulin-like growth factor-I.Anticancer Res2008;28:721-30

[145]

KojimaS,SuzukiH,FuruyaY.Implications of insulin-like growth factor-I for prostate cancer therapies.Int J Urol2009;16:161-7

[146]

NimptschK,PollakMN.Plasma insulin-like growth factor 1 is positively associated with low-grade prostate cancer in the Health Professionals Follow-up Study 1993-2004.Int J Cancer2011;128:660-7 PMCID:PMC2948057

[147]

HeideggerI,SampsonN.The insulin-like growth factor (IGF) axis as an anticancer target in prostate cancer.Cancer Lett2015;367:113-21

[148]

CaoY,ShuiIM.Prediagnostic plasma IGFBP-1, IGF-1 and risk of prostate cancer.Int J Cancer2015;136:2418-26 PMCID:PMC4360136

[149]

AhearnTU,PetterssonA.Transdisciplinary Prostate Cancer Partnership (ToPCaP)Expression of IGF/insulin receptor in prostate cancer tissue and progression to lethal disease.Carcinogenesis2018;39:1431-7 PMCID:PMC6314328

[150]

KimM,KimJK.Association between serum levels of insulin-like growth factor-1, bioavailable testosterone, and pathologic Gleason score.Cancer Med2018;7:4170-80 PMCID:PMC6089192

[151]

OhishiT,SakashitaC.Inhibition of mitochondria ATP synthase suppresses prostate cancer growth through reduced insulin-like growth factor-1 secretion by prostate stromal cells.Int J Cancer2020;146:3474-84

[152]

MelnikBC,SchmitzG.Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth.Nutr J2013;12:103 PMCID:PMC3725179

[153]

MelnikBC.Milk's role as an epigenetic regulator in health and disease.Diseases2017;5:12 PMCID:PMC5456335

[154]

VasconcelosA,RavascoP.Dairy products: is there an impact on promotion of prostate cancer?.Front Nutr2019;6:62 PMCID:PMC6527888

[155]

PereiraPC.Milk nutritional composition and its role in human health.Nutrition2014;30:619-27

[156]

TunickMH.Dairy products and health: recent insights.J Agric Food Chem2015;63:9381-8

[157]

ThorningTK,TholstrupT,GivensI.Milk and dairy products: good or bad for human health?.Food Nutr Res2016;60:32527 PMCID:PMC5122229

[158]

GilÁ.Introduction and executive summary of the supplement, role of milk and dairy products in health and prevention of noncommunicable chronic diseases: a series of systematic reviews.Adv Nutr2019;10:S67-73 PMCID:PMC6518123

[159]

TimonCM,BhargavaN,FeeneyEL.Dairy consumption and metabolic health.Nutrients2020;12:3040 PMCID:PMC7601440

[160]

MelnikBC.Lifetime impact of Cow's milk on overactivation of mTORC1: from fetal to childhood overgrowth, acne, diabetes, cancers, and neurodegeneration.Biomolecules2021;11:404 PMCID:PMC8000710

[161]

WillettWC.Milk and health.N Engl J Med2020;382:644-54

[162]

MichaëlssonK,LangenskiöldS.Milk intake and risk of mortality and fractures in women and men: cohort studies.BMJ2014;349:g6015 PMCID:PMC4212225

[163]

TognonG,ShunginD.Nonfermented milk and other dairy products: associations with all-cause mortality.Am J Clin Nutr2017;105:1502-11 PMCID:PMC6546226

[164]

MichaëlssonK,MelhusH.Milk, fruit and vegetable, and total antioxidant intakes in relation to mortality rates: cohort studies in women and men.Am J Epidemiol2017;185:345-61 PMCID:PMC5391717

[165]

MichaëlssonK.Mixing of apples and oranges in milk research: a cohort analysis of non-fermented milk intake and all-cause mortality.Nutrients2020;12:1393 PMCID:PMC7284719

[166]

TorniainenS,AutioV.Lactase persistence, dietary intake of milk, and the risk for prostate cancer in Sweden and Finland.Cancer Epidemiol Biomarkers Prev2007;16:956-61

[167]

AgarwalMM,MandalAK.Lactose intolerance in prostate cancer patients: incidence and associated factors.Scand J Gastroenterol2008;43:270-6

[168]

TorfadottirJE,MucciL.Milk intake in early life and risk of advanced prostate cancer.Am J Epidemiol2012;175:144-53 PMCID:PMC3249408

[169]

PetterssonA,KenfieldSA.Milk and dairy consumption among men with prostate cancer and risk of metastases and prostate cancer death.Cancer Epidemiol Biomarkers Prev2012;21:428-36 PMCID:PMC3297731

[170]

SongY,CaoY.Whole milk intake is associated with prostate cancer-specific mortality among U.S. male physicians.J Nutr2013;143:189-96 PMCID:PMC3542910

[171]

YangM,Van BlariganEL.Dairy intake after prostate cancer diagnosis in relation to disease-specific and total mortality.Int J Cancer2015;137:2462-9 PMCID:PMC4754664

[172]

LuW,NiuY,XiaD.Dairy products intake and cancer mortality risk: a meta-analysis of 11 population-based cohort studies.Nutr J2016;15:91 PMCID:PMC5073921

[173]

DownerMK,MucciLA.Dairy intake in relation to prostate cancer survival.Int J Cancer2017;140:2060-9

[174]

SteckSE,SuLJ.Calcium, magnesium, and whole-milk intakes and high-aggressive prostate cancer in the North Carolina-Louisiana Prostate Cancer Project (PCaP).Am J Clin Nutr2018;107:799-807

[175]

TatD,CowanJE.Milk and other dairy foods in relation to prostate cancer recurrence: data from the cancer of the prostate strategic urologic research endeavor (CaPSURE™).Prostate2018;78:32-9 PMCID:PMC5716878

[176]

GaardM,LøkenEB.Dietary fat and the risk of breast cancer: a prospective study of 25,892 Norwegian women.Int J Cancer1995;63:13-7

[177]

RoncoAL,DáttoliR.Dairy foods and risk of breast cancer: a case-control study in Montevideo, Uruguay.Eur J Cancer Prev2002;11:457-63

[178]

WangF,WangF.Risk factors for breast cancer in women residing in urban and rural areas of eastern China.J Int Med Res2015;43:774-89

[179]

Galván-SalazarHR,Madrigal-PérezD.Association of milk and meat consumption with the development of breast cancer in a western Mexican population.Breast Care (Basel)2015;10:393-6 PMCID:PMC4789875

[180]

JiJ,SundquistK.Lactose intolerance and risk of lung, breast and ovarian cancers: aetiological clues from a population-based study in Sweden.Br J Cancer2015;112:149-52 PMCID:PMC4453601

[181]

McCannSE,BaumgartCW,YaoS.Usual consumption of specific dairy foods is associated with breast cancer in the Roswell Park cancer institute data bank and biorepository.Curr Dev Nutr2017;1:e000422 PMCID:PMC5998914

[182]

FraserGE,OrlichM,SiriratR.Dairy, soy, and risk of breast cancer: those confounded milks.Int J Epidemiol2020;49:1526-37 PMCID:PMC8453418

[183]

KaluzaJ,LauriolaM.Long-term consumption of non-fermented and fermented dairy products and risk of breast cancer by estrogen receptor status - Population-based prospective cohort study.Clin Nutr2021;40:1966-73

[184]

Duarte-SallesT,StepienM.Dairy products and risk of hepatocellular carcinoma: the European Prospective Investigation into Cancer and Nutrition.Int J Cancer2014;135:1662-72

[185]

YangW,MaY.A prospective study of dairy product intake and the risk of hepatocellular carcinoma in U.S. men and women.Int J Cancer2020;146:1241-9 PMCID:PMC6872903

[186]

WangXJ,ZhangWS.Milk consumption and risk of mortality from all-cause, cardiovascular disease and cancer in older people.Clin Nutr2020;39:3442-51

[187]

MelnikBC.Dairy consumption and hepatocellular carcinoma risk.Ann Transl Med2021;9:736 PMCID:PMC8106105

[188]

WangJ,ZhangD.Dairy product consumption and risk of non-hodgkin lymphoma: a meta-analysis.Nutrients2016;8:120 PMCID:PMC4808850

[189]

Guerrero-ZotanoA,ArteagaCL.PI3K/AKT/mTOR: role in breast cancer progression, drug resistance, and treatment.Cancer Metastasis Rev2016;35:515-24

[190]

SharmaVR,SharmaAK.PI3K/Akt/mTOR intracellular pathway and breast cancer: factors, mechanism and regulation.Curr Pharm Des2017;23:1633-8

[191]

HareSH.mTOR function and therapeutic targeting in breast cancer.Am J Cancer Res2017;7:383-404 PMCID:PMC5385631

[192]

LiuJ,ZhouFX,SunL.Targeting the mTOR pathway in breast cancer.Tumour Biol2017;39:1010428317710825

[193]

ArakiK.Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer.Breast Cancer2018;25:392-401

[194]

ButtG,QureshiMZ.Role of mTORC1 and mTORC2 in breast cancer: therapeutic targeting of mTOR and its partners to overcome metastasis and drug resistance.Adv Exp Med Biol2019;1152:283-92

[195]

SridharanS.Distinct roles of mTOR targets S6K1 and S6K2 in breast cancer.Int J Mol Sci2020;21:1199 PMCID:PMC7072743

[196]

XuBH,YangY.Aberrant amino acid signaling promotes growth and metastasis of hepatocellular carcinomas through Rab1A-dependent activation of mTORC1 by Rab1A.Oncotarget2015;6:20813-28 PMCID:PMC4673231

[197]

EricksenRE,McDonnellE.Loss of BCAA catabolism during carcinogenesis enhances mTORC1 activity and promotes tumor development and progression.Cell Metab2019;29:1151-65.e6 PMCID:PMC6506390

[198]

EricksenRE.Malignant manipulaTORs of metabolism: suppressing BCAA catabolism to enhance mTORC1 activity.Mol Cell Oncol2019;6:1585171 PMCID:PMC6512911

[199]

AkulaSM,SteelmanLS.RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1 and TP53 pathways and regulatory miRs as therapeutic targets in hepatocellular carcinoma.Expert Opin Ther Targets2019;23:915-29

[200]

FerrínG,AmadoV,De la MataM.Activation of mTOR signaling pathway in hepatocellular carcinoma.Int J Mol Sci2020;21:1266 PMCID:PMC7072933

[201]

XuZZ,WangAH.Activation of the PI3K/AKT/mTOR pathway in diffuse large B cell lymphoma: clinical significance and inhibitory effect of rituximab.Ann Hematol2013;92:1351-8

[202]

MajchrzakA,SmolewskiP.Inhibition of the PI3K/Akt/mTOR signaling pathway in diffuse large B-cell lymphoma: current knowledge and clinical significance.Molecules2014;19:14304-15 PMCID:PMC6271242

[203]

BrowneSH,PreziosiM.mTOR activity in AIDS-related diffuse large B-cell lymphoma.PLoS One2017;12:e0170771 PMCID:PMC5305194

[204]

RicciJE.Metabolic reprogramming of non-Hodgkin's B-cell lymphomas and potential therapeutic strategies.Front Oncol2018;8:556 PMCID:PMC6288288

[205]

HowellJJ,Ben-SahraI.A growing role for mTOR in promoting anabolic metabolism.Biochem Soc Trans2013;41:906-12

[206]

Ben-SahraI.mTORC1 signaling and the metabolic control of cell growth.Curr Opin Cell Biol2017;45:72-82 PMCID:PMC5545101

[207]

Rabanal-RuizY.mTORC1 and nutrient homeostasis: the central role of the lysosome.Int J Mol Sci2018;19:818 PMCID:PMC5877679

[208]

TeeAR.The target of rapamycin and mechanisms of cell growth.Int J Mol Sci2018;19:880 PMCID:PMC5877741

[209]

CondonKJ.Nutrient regulation of mTORC1 at a glance.J Cell Sci2019;132:jcs222570 PMCID:PMC6857595

[210]

ZhuM.Regulation of mTORC1 by small GTPases in response to nutrients.J Nutr2020;150:1004-11

[211]

MelickCH.Regulation of mTORC1 by upstream stimuli.Genes (Basel)2020;11:989 PMCID:PMC7565831

[212]

Rich-EdwardsJW,PollakMN.Milk consumption and the prepubertal somatotropic axis.Nutr J2007;6:28 PMCID:PMC2098760

[213]

BarreaL,MacchiaPE.Influence of nutrition on somatotropic axis: milk consumption in adult individuals with moderate-severe obesity.Clin Nutr2017;36:293-301

[214]

GrimbergA.Growth hormone and prostate cancer: guilty by association?.J Endocrinol Invest1999;22:64-73 PMCID:PMC4152917

[215]

Weiss-MesserE,AdiA.Growth hormone (GH) receptors in prostate cancer: gene expression in human tissues and cell lines and characterization, GH signaling and androgen receptor regulation in LNCaP cells.Mol Cell Endocrinol2004;220:109-23

[216]

BidoseeM,Weiss-MesserE.Regulation of growth hormone receptors in human prostate cancer cell lines.Mol Cell Endocrinol2009;309:82-92

[217]

BidoseeM,Weiss-MesserE.Growth hormone affects gene expression and proliferation in human prostate cancer cells.Int J Androl2011;34:124-37

[218]

NakonechnayaAO.Growth hormone enhances LNCaP prostate cancer cell motility.Endocr Res2015;40:97-105

[219]

LaronZ.Lessons from 50 years of study of Laron syndrome.Endocr Pract2015;21:1395-402

[220]

LinS,LiC.Growth hormone receptor mutations related to individual dwarfism.Int J Mol Sci2018;19:1433 PMCID:PMC5983672

[221]

ShevahO.Patients with congenital deficiency of IGF-I seem protected from the development of malignancies: a preliminary report.Growth Horm IGF Res2007;17:54-7

[222]

SteuermanR,LaronZ.Congenital IGF1 deficiency tends to confer protection against post-natal development of malignancies.Eur J Endocrinol2011;164:485-9

[223]

Lapkina-GendlerL,Pasmanik-ChorM.Identification of signaling pathways associated with cancer protection in Laron syndrome.Endocr Relat Cancer2016;23:399-410

[224]

WernerH,NagarajK.Laron syndrome research paves the way for new insights in oncological investigation.Cells2020;9:2446 PMCID:PMC7696416

[225]

WangZ,CoschiganoKT.Disruption of growth hormone signaling retards early stages of prostate carcinogenesis in the C3(1)/T antigen mouse.Endocrinology2005;146:5188-96

[226]

WangZ,KinemanRD.Disruption of growth hormone signaling retards prostate carcinogenesis in the Probasin/TAg rat.Endocrinology2008;149:1366-76 PMCID:PMC2275369

[227]

Muñoz-MorenoL,PrietoJC,BajoAM.Growth hormone-releasing hormone receptor antagonists modify molecular machinery in the progression of prostate cancer.Prostate2018;78:915-26

[228]

RecouvreuxMV,GaoAC.Androgen receptor regulation of local growth hormone in prostate cancer cells.Endocrinology2017;158:2255-68 PMCID:PMC5505214

[229]

RogersI,GunnellD,HollyJ.ALSPAC Study TteamMilk as a food for growth?.Public Health Nutr2006;9:359-68

[230]

NoratT,RinaldiS.Diet, serum insulin-like growth factor-I and IGF-binding protein-3 in European women.Eur J Clin Nutr2007;61:91-8

[231]

CroweFL,AllenNE.The association between diet and serum concentrations of IGF-I, IGFBP-1, IGFBP-2, and IGFBP-3 in the European Prospective Investigation into Cancer and Nutrition.Cancer Epidemiol Biomarkers Prev2009;18:1333-40

[232]

QinLQ,XuJY.Milk consumption and circulating insulin-like growth factor-I level: a systematic literature review.Int J Food Sci Nutr2009;60 Suppl 7:330-40

[233]

SrinivasanV,RohrmannS.Associations of current, childhood, and adolescent milk intake with serum insulin-like growth factor (IGF)-1 and IGF binding protein 3 concentrations in adulthood.Nutr Cancer2019;71:931-8

[234]

Romo VenturaE,RohrmannS.Association of dietary intake of milk and dairy products with blood concentrations of insulin-like growth factor 1 (IGF-1) in Bavarian adults.Eur J Nutr2020;59:1413-20

[235]

WatlingCZ,TongTYN.Associations of circulating insulin-like growth factor-I with intake of dietary proteins and other macronutrients.Clin Nutr2021;40:4685-93 PMCID:PMC8345002

[236]

HoppeC,DalumC,MichaelsenKF.Differential effects of casein versus whey on fasting plasma levels of insulin, IGF-1 and IGF-1/IGFBP-3: results from a randomized 7-day supplementation study in prepubertal boys.Eur J Clin Nutr2009;63:1076-83

[237]

BlumJW.Insulin-like growth factors (IGFs), IGF binding proteins, and other endocrine factors in milk: role in the newborn.Adv Exp Med Biol2008;606:397-422

[238]

MeyerZ,WirthgenE,HammonHM.Analysis of the IGF-system in milk from farm animals - occurrence, regulation, and biomarker potential.Growth Horm IGF Res2017;35:1-7

[239]

HoeflichA.Functional analysis of the IGF-system in milk.Best Pract Res Clin Endocrinol Metab2017;31:409-18

[240]

FrancisGL,BallardFJ,WallaceJC.Insulin-like growth factors 1 and 2 in bovine colostrum. Sequences and biological activities compared with those of a potent truncated form.Biochem J1988;251:95-103 PMCID:PMC1148968

[241]

MaurasN,HaymondMW.Sex steroids, growth hormone, insulin-like growth factor-1: neuroendocrine and metabolic regulation in puberty.Horm Res1996;45:74-80

[242]

BenyiE.The physiology of childhood growth: hormonal regulation.Horm Res Paediatr2017;88:6-14

[243]

BromekE,HaduchA.Serotonin receptors of 5-HT2 type in the hypothalamic arcuate nuclei positively regulate liver cytochrome P450 via stimulation of the growth hormone-releasing hormone/growth hormone hormonal pathway.Drug Metab Dispos2019;47:80-5

[244]

VotteroA,LocheS.New aspects of the physiology of the GH-IGF-1 axis.Endocr Dev2013;24:96-105

[245]

TakahashiY.The role of growth hormone and insulin-like growth factor-i in the liver.Int J Mol Sci2017;18:1447 PMCID:PMC5535938

[246]

HarpJB,PhillipsLS.Nutrition and somatomedin. XXIII. Molecular regulation of IGF-I by amino acid availability in cultured hepatocytes.Diabetes1991;40:95-101

[247]

WheelhouseNM,LomaxMA,HazleriggDG.Growth hormone and amino acid supply interact synergistically to control insulin-like growth factor-I production and gene expression in cultured ovine hepatocytes.J Endocrinol1999;163:353-61

[248]

MillerRA,ChangY,SiglerR.Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance.Aging Cell2005;4:119-25 PMCID:PMC7159399

[249]

DukesA,El RefaeyM.The aromatic amino acid tryptophan stimulates skeletal muscle IGF1/p70s6k/mTor signaling in vivo and the expression of myogenic genes in vitro.Nutrition2015;31:1018-24 PMCID:PMC4465076

[250]

FleddermannM,GroteV.Role of selected amino acids on plasma IGF-I concentration in infants.Eur J Nutr2017;56:613-20

[251]

OhHS,LeeJS,LeeSJ.Effects of l-arginine on growth hormone and insulin-like growth factor 1.Food Sci Biotechnol2017;26:1749-54 PMCID:PMC6049717

[252]

TsugawaY,ImaiT.Arginine induces IGF-1 secretion from the endoplasmic reticulum.Biochem Biophys Res Commun2019;514:1128-32

[253]

LiB,WuRY.Bovine milk-derived exosomes enhance goblet cell activity and prevent the development of experimental necrotizing enterocolitis.PLoS One2019;14:e0211431 PMCID:PMC6353182

[254]

ArgonY,MarzecMT.Glucose-regulated protein 94 (GRP94): a novel regulator of insulin-like growth factor production.Cells2020;9:1844 PMCID:PMC7465916

[255]

GhiasiSM,Hede AndersenC.Endoplasmic reticulum chaperone glucose-regulated protein 94 is essential for proinsulin handling.Diabetes2019;68:747-60 PMCID:PMC6425875

[256]

HuangJ.The TSC1-TSC2 complex: a molecular switchboard controlling cell growth.Biochem J2008;412:179-90 PMCID:PMC2735030

[257]

FosterKG.Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony.J Biol Chem2010;285:14071-7 PMCID:PMC2863215

[258]

MenonS,TalbottG.Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome.Cell2014;156:771-85 PMCID:PMC4030681

[259]

DibbleCC.Regulation of mTORC1 by PI3K signaling.Trends Cell Biol2015;25:545-55 PMCID:PMC4734635

[260]

JohnsonSC.Nutrient sensing, signaling and ageing: the role of IGF-1 and mTOR in ageing and age-related disease.Subcell Biochem2018;90:49-97

[261]

HoppeC,MichaelsenKF.Cow's milk and linear growth in industrialized and developing countries.Annu Rev Nutr2006;26:131-73

[262]

MølgaardC,ArnbergK.Milk and growth in children: effects of whey and casein.Nestle Nutr Workshop Ser Pediatr Program2011;67:67-78

[263]

WileyAS.Cow milk consumption, insulin-like growth factor-I, and human biology: a life history approach.Am J Hum Biol2012;24:130-8

[264]

MartinRM,GunnellD.Milk and linear growth: programming of the IGF-I axis and implication for health in adulthood.Nestle Nutr Workshop Ser Pediatr Program2011;67:79-97

[265]

HyunS.Body size regulation and insulin-like growth factor signaling.Cell Mol Life Sci2013;70:2351-65

[266]

OstmanEM,BjörckIM.Inconsistency between glycemic and insulinemic responses to regular and fermented milk products.Am J Clin Nutr2001;74:96-100

[267]

HoytG,CordainL.Dissociation of the glycaemic and insulinaemic responses to whole and skimmed milk.Br J Nutr2005;93:175-7

[268]

PowerO,JakemanP.Human insulinotropic response to oral ingestion of native and hydrolysed whey protein.Amino Acids2009;37:333-9

[269]

YangJ,BurkhardtBR,WolfBA.Leucine metabolism in regulation of insulin secretion from pancreatic beta cells.Nutr Rev2010;68:270-9 PMCID:PMC2969169

[270]

BoirieY,GachonP,MauboisJL.Slow and fast dietary proteins differently modulate postprandial protein accretion.Proc Natl Acad Sci U S A1997;94:14930-5 PMCID:PMC25140

[271]

MooreWT,FausnachtDW,SuhKS.Beta cell function and the nutritional state: dietary factors that influence insulin secretion.Curr Diab Rep2015;15:76

[272]

StrausDS.Growth-stimulatory actions of insulin in vitro and in vivo.Endocr Rev1984;5:356-69

[273]

SandowJ.Growth effects of insulin and insulin analogues.Arch Physiol Biochem2009;115:72-85

[274]

ZoncuR,SabatiniDM.mTOR: from growth signal integration to cancer, diabetes and ageing.Nat Rev Mol Cell Biol2011;12:21-35 PMCID:PMC3390257

[275]

ManningBD.AKT/PKB signaling: navigating the network.Cell2017;169:381-405 PMCID:PMC5546324

[276]

TokarzVL,KlipA.The cell biology of systemic insulin function.J Cell Biol2018;217:2273-89 PMCID:PMC6028526

[277]

McGuireM. Nutritional sciences: from fundamentals to food (with table of food composition booklet). 3rd ed. Boston, USA: Cengage Learning; 2018.

[278]

LendersCM,WilmoreDW.Evaluation of a novel food composition database that includes glutamine and other amino acids derived from gene sequencing data.Eur J Clin Nutr2009;63:1433-9 PMCID:PMC3249386

[279]

DuránRV,RobitailleAM.Glutaminolysis activates Rag-mTORC1 signaling.Mol Cell2012;47:349-58

[280]

DuránRV.Glutaminolysis feeds mTORC1.Cell Cycle2012;11:4107-8 PMCID:PMC3524199

[281]

AvruchJ,Ortiz-VegaS,PapageorgiouA.Amino acid regulation of TOR complex 1.Am J Physiol Endocrinol Metab2009;296:E592-602 PMCID:PMC2670622

[282]

KimSG,BlenisJ.Nutrient regulation of the mTOR complex 1 signaling pathway.Mol Cells2013;35:463-73 PMCID:PMC3887879

[283]

JewellJL,GuanKL.Amino acid signalling upstream of mTOR.Nat Rev Mol Cell Biol2013;14:133-9 PMCID:PMC3988467

[284]

Bar-PeledL.Regulation of mTORC1 by amino acids.Trends Cell Biol2014;24:400-6 PMCID:PMC4074565

[285]

ZhengX,HeQ.Current models of mammalian target of rapamycin complex 1 (mTORC1) activation by growth factors and amino acids.Int J Mol Sci2014;15:20753-69 PMCID:PMC4264194

[286]

AverousJ,CarraroV.Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids.Cell Signal2014;26:1918-27

[287]

OshiroN,AvruchJ.Amino acids activate mammalian target of rapamycin (mTOR) complex 1 without changing Rag GTPase guanyl nucleotide charging.J Biol Chem2014;289:2658-74 PMCID:PMC3908400

[288]

JewellJL,RussellRC.Metabolism. Differential regulation of mTORC1 by leucine and glutamine.Science2015;347:194-8 PMCID:PMC4384888

[289]

WangS,WolfsonRL.Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1.Science2015;347:188-94 PMCID:PMC4295826

[290]

DuanY,TanK.Key mediators of intracellular amino acids signaling to mTORC1 activation.Amino Acids2015;47:857-67

[291]

KimJ.Rag GTPase in amino acid signaling.Amino Acids2016;48:915-28

[292]

PowisK.Conserved regulators of Rag GTPases orchestrate amino acid-dependent TORC1 signaling.Cell Discov2016;2:15049 PMCID:PMC4860963

[293]

NicastroR,PanchaudN.The architecture of the rag GTPase signaling network.Biomolecules2017;7:48 PMCID:PMC5618229

[294]

WolfsonRL.The dawn of the age of amino acid sensors for the mTORC1 pathway.Cell Metab2017;26:301-9 PMCID:PMC5560103

[295]

RamlaulK.Signal integration in the (m)TORC1 growth pathway.Front Biol (Beijing)2018;13:237-62 PMCID:PMC7116063

[296]

LiXZ.Sensors for the mTORC1 pathway regulated by amino acids.J Zhejiang Univ Sci B2019;20:699-712 PMCID:PMC6700350

[297]

ZhuangY,HeJ,YinY.Recent advances in understanding of amino acid signaling to mTORC1 activation.Front Biosci (Landmark Ed)2019;24:971-82

[298]

MengD,WangH.Glutamine and asparagine activate mTORC1 independently of Rag GTPases.J Biol Chem2020;295:2890-9 PMCID:PMC7062167

[299]

SegevN.Hijacking leucyl-tRNA synthetase for amino acid-dependent regulation of TORC1.Mol Cell2012;46:4-6 PMCID:PMC4714921

[300]

BonfilsG,BontronS,UngermannC.Leucyl-tRNA synthetase controls TORC1 via the EGO complex.Mol Cell2012;46:105-10

[301]

HanJM,ParkMC.Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway.Cell2012;149:410-24

[302]

YoonMS,ArauzE,KimS.Leucyl-tRNA synthetase activates Vps34 in amino acid-sensing mTORC1 signaling.Cell Rep2016;16:1510-7 PMCID:PMC4981521

[303]

ChoiH,KangJ.Leucine-induced localization of Leucyl-tRNA synthetase in lysosome membrane.Biochem Biophys Res Commun2017;493:1129-35

[304]

KimJH,LeeM.Control of leucine-dependent mTORC1 pathway through chemical intervention of leucyl-tRNA synthetase and RagD interaction.Nat Commun2017;8:732 PMCID:PMC5622079

[305]

LeeM,YoonI.Coordination of the leucine-sensing Rag GTPase cycle by leucyl-tRNA synthetase in the mTORC1 signaling pathway.Proc Natl Acad Sci U S A2018;115:E5279-88 PMCID:PMC6003318

[306]

YoonI,KimHK.Glucose-dependent control of leucine metabolism by leucyl-tRNA synthetase 1.Science2020;367:205-10

[307]

CarrollB,MaddocksOD.Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity.Elife2016;5:e11058 PMCID:PMC4764560

[308]

GroenewoudMJ.Rheb and Rags come together at the lysosome to activate mTORC1.Biochem Soc Trans2013;41:951-5

[309]

JensenRG,Lammi-keefeCJ.Lipids of bovine and human milks: a comparison.J Dairy Sci1990;73:223-40

[310]

QianL,ZhangY.Metabolomic approaches to explore chemical diversity of human breast-milk, formula milk and bovine milk.Int J Mol Sci2016;17:2128 PMCID:PMC5187928

[311]

BourlieuC.Structure-function relationship of the milk fat globule.Curr Opin Clin Nutr Metab Care2015;18:118-27

[312]

BassingthwaighteJB,van der VusseG.Modeling of palmitate transport in the heart.Mol Cell Biochem1989;88:51-8 PMCID:PMC3521048

[313]

SuiterC,KhaliliR.Free fatty acids: circulating contributors of metabolic syndrome.Cardiovasc Hematol Agents Med Chem2018;16:20-34

[314]

ShawRJ.LKB1 and AMP-activated protein kinase control of mTOR signalling and growth.Acta Physiol (Oxf)2009;196:65-80 PMCID:PMC2760308

[315]

CarrollB.The lysosome: a crucial hub for AMPK and mTORC1 signalling.Biochem J2017;474:1453-66

[316]

HardieDG.AMP-activated protein kinase - not just an energy sensor.F1000Res2017;6:1724

[317]

KwonB.Palmitate activates mTOR/p70S6K through AMPK inhibition and hypophosphorylation of raptor in skeletal muscle cells: reversal by oleate is similar to metformin.Biochimie2015;118:141-50

[318]

YasudaM,KumeS.Fatty acids are novel nutrient factors to regulate mTORC1 lysosomal localization and apoptosis in podocytes.Biochim Biophys Acta2014;1842:1097-108

[319]

KumarS.Independent role of PP2A and mTORc1 in palmitate induced podocyte death.Biochimie2015;112:73-84

[320]

ZhouYP,ShenW,YuSJ.Comparison of effects of oleic acid and palmitic acid on lipid deposition and mTOR/S6K1/SREBP-1c pathway in HepG2 cells.Zhonghua Gan Zang Bing Za Zhi2018;26:451-6

[321]

TangNT,BrownMD.Fatty-acid uptake in prostate cancer cells using dynamic microfluidic raman technology.Molecules2020;25:1652 PMCID:PMC7180971

[322]

KurahashiN,IwasakiM,TsuganeAS.Japan Public Health Center-Based Prospective Study GroupDairy product, saturated fatty acid, and calcium intake and prostate cancer in a prospective cohort of Japanese men.Cancer Epidemiol Biomarkers Prev2008;17:930-7

[323]

PrebleI,KoppR.Dairy product consumption and prostate cancer risk in the United States.Nutrients2019;11:1615 PMCID:PMC6683061

[324]

LiH,MaY,XiaoR.Milk fat globule membrane protein promotes C2C12 cell proliferation through the PI3K/Akt signaling pathway.Int J Biol Macromol2018;114:1305-14

[325]

LiH,LiX,ZhouS.MFG-E8 induced differences in proteomic profiles in mouse C2C12 cells and its effect on PI3K/Akt and ERK signal pathways.Int J Biol Macromol2019;124:681-8

[326]

JinushiM,CarrascoDR.Milk fat globule EGF-8 promotes melanoma progression through coordinated Akt and twist signaling in the tumor microenvironment.Cancer Res2008;68:8889-98

[327]

SokiFN,JonesJD.Polarization of prostate cancer-associated macrophages is induced by milk fat globule-EGF factor 8 (MFG-E8)-mediated efferocytosis.J Biol Chem2014;289:24560-72 PMCID:PMC4148880

[328]

RikkertLG,van DamA.Detection of extracellular vesicles in plasma and urine of prostate cancer patients by flow cytometry and surface plasmon resonance imaging.PLoS One2020;15:e0233443 PMCID:PMC7272016

[329]

ReinhardtTA,NonneckeBJ.Bovine milk exosome proteome.J Proteomics2012;75:1486-92

[330]

YamauchiM,RahmanM.Efficient method for isolation of exosomes from raw bovine milk.Drug Dev Ind Pharm2019;45:359-64

[331]

RahmanMM,YamauchiM.Acidification effects on isolation of extracellular vesicles from bovine milk.PLoS One2019;14:e0222613 PMCID:PMC6746375

[332]

MunagalaR,JeyabalanJ.Bovine milk-derived exosomes for drug delivery.Cancer Lett2016;371:48-61 PMCID:PMC4706492

[333]

Khalifeh-SoltaniA,SakumaS.Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty acids.Nat Med2014;20:175-83 PMCID:PMC4273653

[334]

DattaR,SoltaniAK.Autoregulation of insulin receptor signaling through MFGE8 and the αvβ5 integrin.Proc Natl Acad Sci U S A2021;118:e2102171118 PMCID:PMC8106306

[335]

HeßK,BehrensHM.Correlation between the expression of integrins in prostate cancer and clinical outcome in 1284 patients.Ann Diagn Pathol2014;18:343-50

[336]

SunLC,MackeyLV,CoyDH.A conjugate of camptothecin and a somatostatin analog against prostate cancer cell invasion via a possible signaling pathway involving PI3K/Akt, alphaVbeta3/alphaVbeta5 and MMP-2/-9.Cancer Lett2007;246:157-66

[337]

WeltonJL,GurneyM.Proteomics analysis of vesicles isolated from plasma and urine of prostate cancer patients using a multiplex, aptamer-based protein array.J Extracell Vesicles2016;5:31209 PMCID:PMC4929354

[338]

LoughAK.The phytanic acid content of the lipids of bovine tissues and milk.Lipids1977;12:115-9

[339]

BrownPJ,GibberdFB.Diet and Refsum's disease. The determination of phytanic acid and phytol in certain foods and the application of this knowledge to the choice of suitable convenience foods for patients with Refsum's disease.J Hum Nutr Diet1993;6:295-305

[340]

VetterW.Concentrations of phytanic acid and pristanic acid are higher in organic than in conventional dairy products from the German market.Food Chemistry2010;119:746-52

[341]

Roca-SaavedraP,MirandaJM.Phytanic acid consumption and human health, risks, benefits and future trends: a review.Food Chem2017;221:237-47

[342]

WrightME,VirtamoJ,GannPH.Estimated phytanic acid intake and prostate cancer risk: a prospective cohort study.Int J Cancer2012;131:1396-406 PMCID:PMC4415360

[343]

DhaunsiGS,AkhtarS.Phytanic acid attenuates insulin-like growth factor-1 activity via nitric oxide-mediated γ-secretase activation in rat aortic smooth muscle cells: possible implications for pathogenesis of infantile Refsum disease.Pediatr Res2017;81:531-6

[344]

MurakamiD,NaganoO.Presenilin-dependent gamma-secretase activity mediates the intramembranous cleavage of CD44.Oncogene2003;22:1511-6

[345]

OkamotoI,TsuikiH.CD44 cleavage induced by a membrane-associated metalloprotease plays a critical role in tumor cell migration.Oncogene1999;18:1435-46

[346]

HaoJL,KhatriA,LiY.CD147/EMMPRIN and CD44 are potential therapeutic targets for metastatic prostate cancer.Curr Cancer Drug Targets2010;10:287-306

[347]

LiuC,LiuB.The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44.Nat Med2011;17:211-5 PMCID:PMC3076220

[348]

Miletti-GonzálezKE,KumaranMN.Identification of function for CD44 intracytoplasmic domain (CD44-ICD): modulation of matrix metalloproteinase 9 (MMP-9) transcription via novel promoter response element.J Biol Chem2012;287:18995-9007 PMCID:PMC3365933

[349]

XuH,YuanX.The role of CD44 in epithelial-mesenchymal transition and cancer development.Onco Targets Ther2015;8:3783-92 PMCID:PMC4689260

[350]

LaiCJ,LiaoWY,WangHD.CD44 promotes migration and invasion of docetaxel-resistant prostate cancer cells likely via induction of hippo-yap signaling.Cells2019;8:295 PMCID:PMC6523775

[351]

TsaoT,NiJ.Cancer stem cells in prostate cancer radioresistance.Cancer Lett2019;465:94-104

[352]

OkamotoI,MurakamiD.Proteolytic release of CD44 intracellular domain and its role in the CD44 signaling pathway.J Cell Biol2001;155:755-62 PMCID:PMC2150876

[353]

SenbanjoLT,MajumdarS.Characterization of CD44 intracellular domain interaction with RUNX2 in PC3 human prostate cancer cells.Cell Commun Signal2019;17:80 PMCID:PMC6647163

[354]

van der DeenM,WangT.The cancer-related Runx2 protein enhances cell growth and responses to androgen and TGFbeta in prostate cancer cells.J Cell Biochem2010;109:828-37 PMCID:PMC2925394

[355]

FowlerM,McGheeL.RUNX1 (AML-1) and RUNX2 (AML-3) cooperate with prostate-derived Ets factor to activate transcription from the PSA upstream regulatory region.J Cell Biochem2006;97:1-17

[356]

LittleGH,AdisetiyoH.Differential effects of RUNX2 on the androgen receptor in prostate cancer: synergistic stimulation of a gene set exemplified by SNAI2 and subsequent invasiveness.Cancer Res2014;74:2857-68 PMCID:PMC4051204

[357]

SchroederTM,WestendorfJJ.Runx2: a master organizer of gene transcription in developing and maturing osteoblasts.Birth Defects Res C Embryo Today2005;75:213-25

[358]

BaniwalSK,GabetY.Runx2 transcriptome of prostate cancer cells: insights into invasiveness and bone metastasis.Mol Cancer2010;9:258 PMCID:PMC2955618

[359]

BaierSR,XieF,ZempleniJ.MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers.J Nutr2014;144:1495-500 PMCID:PMC4162473

[360]

PriceAJ,ApplebyPN.Plasma phytanic acid concentration and risk of prostate cancer: results from the European Prospective Investigation into Cancer and Nutrition.Am J Clin Nutr2010;91:1769-76 PMCID:PMC5749610

[361]

WrightME,MoserAB.Serum phytanic and pristanic acid levels and prostate cancer risk in Finnish smokers.Cancer Med2014;3:1562-9 PMCID:PMC4298383

[362]

XuJ,TurnerAR.Serum levels of phytanic acid are associated with prostate cancer risk.Prostate2005;63:209-14

[363]

ThornburgT,ChenYQ,ChangB.Phytanic acid, AMACR and prostate cancer risk.Future Oncol2006;2:213-23

[364]

HellgrenLI.Phytanic acid--an overlooked bioactive fatty acid in dairy fat?.Ann N Y Acad Sci2010;1190:42-9

[365]

NóbregaM,SouzaMF.Association of polymorphisms of PTEN, AKT1, PI3K, AR, and AMACR genes in patients with prostate cancer.Genet Mol Biol2020;43:e20180329 PMCID:PMC7271063

[366]

KotovaES,DoludinYV.Identification of clinically significant prostate cancer by combined PCA3 and AMACR mRNA detection in urine samples.Res Rep Urol2020;12:403-13 PMCID:PMC7505712

[367]

LloydMD,WierzbickiAS.Alpha-methylacyl-CoA racemase--an 'obscure' metabolic enzyme takes centre stage.FEBS J2008;275:1089-102

[368]

KueferR,ZhouM.α-Methylacyl-CoA Racemase: expression levels of this novel cancer biomarker depend on tumor differentiation.Am J Pathol2002;161:841-8 PMCID:PMC1867250

[369]

RubinMA,AndrénO.Decreased alpha-methylacyl CoA racemase expression in localized prostate cancer is associated with an increased rate of biochemical recurrence and cancer-specific death.Cancer Epidemiol Biomarkers Prev2005;14:1424-32

[370]

BarryM,StampferMJ.α-Methylacyl-CoA racemase expression and lethal prostate cancer in the Physicians' Health Study and Health Professionals Follow-up Study.Prostate2012;72:301-6 PMCID:PMC3267640

[371]

AnanthanarayananV,YangXJ,GannPH.Alpha-methylacyl-CoA racemase (AMACR) expression in normal prostatic glands and high-grade prostatic intraepithelial neoplasia (HGPIN): association with diagnosis of prostate cancer.Prostate2005;63:341-6

[372]

ZhaS,DenisS.Alpha-methylacyl-CoA racemase as an androgen-independent growth modifier in prostate cancer.Cancer Res2003;63:7365-76

[373]

MaruyamaK,OhyamaK.Exposure to exogenous estrogen through intake of commercial milk produced from pregnant cows.Pediatr Int2010;52:33-8

[374]

GoyonA,KraehenbuehlK,ShaoB.Determination of steroid hormones in bovine milk by LC-MS/MS and their levels in Swiss Holstein cow milk.Food Addit Contam Part A Chem Anal Control Expo Risk Assess2016;33:804-16

[375]

MalekinejadH,BergwerffAA.Naturally occurring estrogens in processed milk and in raw milk (from gestated cows).J Agric Food Chem2006;54:9785-91

[376]

TsoJ.A systematic investigation to optimize simultaneous extraction and liquid chromatography tandem mass spectrometry analysis of estrogens and their conjugated metabolites in milk.J Chromatogr A2010;1217:4784-95

[377]

KolokAS,RoganEG.The fate of synthetic and endogenous hormones used in the US beef and dairy industries and the potential for human exposure.Curr Environ Health Rep2018;5:225-32

[378]

AllottEH,FreedlandSJ.Obesity and prostate cancer: weighing the evidence.Eur Urol2013;63:800-9 PMCID:PMC3597763

[379]

BandiniM,BrigantiA.Obesity and prostate cancer.Curr Opin Urol2017;27:415-21

[380]

SchneiderG,BerkowitzR.Increased estrogen production in obese men.J Clin Endocrinol Metab1979;48:633-8

[381]

CarrubaG.Estrogen and prostate cancer: an eclipsed truth in an androgen-dominated scenario.J Cell Biochem2007;102:899-911

[382]

DobbsRW,GreenwaldDT,PrinsGS.Estrogens and prostate cancer.Prostate Cancer Prostatic Dis2019;22:185-94

[383]

SehgalPD,NicholsonTM.Tissue-specific quantification and localization of androgen and estrogen receptors in prostate cancer.Hum Pathol2019;89:99-108 PMCID:PMC6642018

[384]

Tong daY,JinY.Changes of androgen receptor and insulin-like growth factor-1 in LNCaP prostate cancer cells treated with sex hormones and flutamide.Asian Pac J Cancer Prev2010;11:1805-9

[385]

Tong da Y, Wu Xy, Sun Hy, Jin Y, Liu Zw, Zhou Fj. Expression changes and regulation of AR and IGF-1 in PC3 prostate cancer cells treated with sexual hormones and flutamide.Tumour Biol2012;33:2151-8

[386]

BonkhoffH.The evolving role of oestrogens and their receptors in the development and progression of prostate cancer.Eur Urol2009;55:533-42

[387]

BonkhoffH.Estrogen receptor signaling in prostate cancer: implications for carcinogenesis and tumor progression.Prostate2018;78:2-10

[388]

YuZ,JiangE.Interaction between IGF-IR and ER induced by E2 and IGF-I.PLoS One2013;8:e62642 PMCID:PMC3660452

[389]

LanzinoM,GarofaloC.Interaction between estrogen receptor alpha and insulin/IGF signaling in breast cancer.Curr Cancer Drug Targets2008;8:597-610

[390]

HawsawiY,TwelvesC,BeattieJ.Insulin-like growth factor - oestradiol crosstalk and mammary gland tumourigenesis.Biochim Biophys Acta2013;1836:345-53

[391]

SunL,LuoL,ZhangG.Estrogen affects cell growth and IGF-1 receptor expression in renal cell carcinoma.Onco Targets Ther2018;11:5873-8 PMCID:PMC6149902

[392]

PandiniG,FrascaF,BelfioreA.Sex steroids upregulate the IGF-1R in prostate cancer cells through a nongenotropic pathway.Ann N Y Acad Sci2009;1155:263-7

[393]

AlayevA,BergerSM.mTORC1 directly phosphorylates and activates ERα upon estrogen stimulation.Oncogene2016;35:3535-43 PMCID:PMC4853282

[394]

MigliaccioA,Di DomenicoM.Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation.EMBO J2000;19:5406-17 PMCID:PMC314017

[395]

MannellaP.Estrogen receptor protein interaction with phosphatidylinositol 3-kinase leads to activation of phosphorylated Akt and extracellular signal-regulated kinase 1/2 in the same population of cortical neurons: a unified mechanism of estrogen action.J Neurosci2006;26:9439-47 PMCID:PMC6674594

[396]

Di ZazzoE,GiovannelliP.Prostate cancer stem cells: the role of androgen and estrogen receptors.Oncotarget2016;7:193-208 PMCID:PMC4807992

[397]

OhlssonJA,HanssonH.Lactose, glucose and galactose content in milk, fermented milk and lactose-free milk products.Int Dairy J2017;73:151-4

[398]

MilesFL,ZhangZF.Concentrated sugars and incidence of prostate cancer in a prospective cohort.Br J Nutr2018;120:703-10 PMCID:PMC6123266

[399]

MarchesiniG,BrunoriA.Galactose elimination capacity and liver volume in aging man.Hepatology1988;8:1079-83

[400]

SchneggM.Quantitative liver function in the elderly assessed by galactose elimination capacity, aminopyrine demethylation and caffeine clearance.J Hepatol1986;3:164-71

[401]

CuiX,ZhangQ.Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alpha-lipoic acid.J Neurosci Res2006;84:647-54

[402]

Sadigh-eteghadS,MccannSK.D-galactose-induced brain ageing model: a systematic review and meta-analysis on cognitive outcomes and oxidative stress indices.PLoS ONE2017;12:e0184122 PMCID:PMC5576729

[403]

ShweT,ChattipakornN.Role of D-galactose-induced brain aging and its potential used for therapeutic interventions.Exp Gerontol2018;101:13-36

[404]

AzmanKF.D-Galactose-induced accelerated aging model: an overview.Biogerontology2019;20:763-82

[405]

ShuklaS,ShankarE.Oxidative stress and antioxidant status in high-risk prostate cancer subjects.Diagnostics (Basel)2020;10:126 PMCID:PMC7151307

[406]

ChenL,ChenX.Ginsenoside Rg1 decreases oxidative stress and down-regulates AKT/mTOR signalling to attenuate cognitive impairment in mice and senescence of neural stem cells induced by D-Galactose.Neurochem Res2018;43:430-40

[407]

KumarB,KhandrikaL,KoulHK.Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype.Cancer Res2008;68:1777-85

[408]

KhandrikaL,KoulS,KoulHK.Oxidative stress in prostate cancer.Cancer Lett2009;282:125-36 PMCID:PMC2789743

[409]

Gupta-EleraG,RobisonRA.The role of oxidative stress in prostate cancer.Eur J Cancer Prev2012;21:155-62

[410]

PaschosA,DuivenvoordenWC.Oxidative stress in prostate cancer: changing research concepts towards a novel paradigm for prevention and therapeutics.Prostate Cancer Prostatic Dis2013;16:217-25

[411]

UdensiUK.Oxidative stress in prostate hyperplasia and carcinogenesis.J Exp Clin Cancer Res2016;35:139 PMCID:PMC5017015

[412]

KayaE,ZorM.Oxidative stress parameters in patients with prostate cancer, benign prostatic hyperplasia and asymptomatic inflammatory prostatitis: a prospective controlled study.Adv Clin Exp Med2017;26:1095-9

[413]

ZhangZ,WangC.Polymorphisms in oxidative stress pathway genes and prostate cancer risk.Cancer Causes Control2019;30:1365-75

[414]

Ahmed Amar SA, Eryilmaz R, Demir H, Aykan S, Demir C. Determination of oxidative stress levels and some antioxidant enzyme activities in prostate cancer.Aging Male2019;22:198-206

[415]

ZhaoY,LiuY.ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway.Mol Cancer2017;16:79 PMCID:PMC5390360

[416]

BeiY,CretoiuD.miR-21 suppression prevents cardiac alterations induced by d-galactose and doxorubicin.J Mol Cell Cardiol2018;115:130-41

[417]

JiaoG,ZhouZ,LiZ.MicroRNA-21 regulates cell proliferation and apoptosis in H2O2-stimulated rat spinal cord neurons.Mol Med Rep2015;12:7011-6

[418]

Golan-GerstlR,MoshayoffV,LeshkowitzD.Characterization and biological function of milk-derived miRNAs.Mol Nutr Food Res2017;61:1700009

[419]

HowardKM,BaierSR.Loss of miRNAs during processing and storage of cow's (Bos taurus) milk.J Agric Food Chem2015;63:588-92 PMCID:PMC4387787

[420]

MancaS,MutaiE.Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution patterns.Sci Rep2018;8:11321 PMCID:PMC6063888

[421]

KirchnerB,DumplerJ,EgeMJ.microRNA in native and processed cow's milk and its implication for the farm milk effect on asthma.J Allergy Clin Immunol2016;137:1893-1895.e13

[422]

WangL,GiraudD.RNase H2-dependent polymerase chain reaction and elimination of confounders in sample collection, storage, and analysis strengthen evidence that microRNAs in Bovine milk are bioavailable in humans.J Nutr2018;148:153-9 PMCID:PMC6251634

[423]

ÖzdemirS.Identification and comparison of exosomal microRNAs in the milk and colostrum of two different cow breeds.Gene2020;743:144609

[424]

KleinjanM,LibregtsSF,FeitsmaAL.Regular industrial processing of Bovine milk impacts the integrity and molecular composition of extracellular vesicles.J Nutr2021;151:1416-25

[425]

YuS,SunL.Fermentation results in quantitative changes in milk-derived exosomes and different effects on cell growth and survival.J Agric Food Chem2017;65:1220-8

[426]

MelnikBC.Pasteurized non-fermented cow's milk but not fermented milk is a promoter of mTORC1-driven aging and increased mortality.Ageing Res Rev2021;67:101270

[427]

IzumiH,ShimizuT,OchiyaT.Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions.J Dairy Sci2012;95:4831-41

[428]

BenmoussaA,LaffontB.Commercial dairy Cow Milk microRNAs resist digestion under simulated gastrointestinal tract conditions.J Nutr2016;146:2206-15

[429]

KusumaRJ,FriemelT,NguyenC.Human vascular endothelial cells transport foreign exosomes from cow's milk by endocytosis.Am J Physiol Cell Physiol2016;310:C800-7 PMCID:PMC4895447

[430]

MelnikBC,GeddesDT.Milk miRNAs: simple nutrients or systemic functional regulators?.Nutr Metab (Lond)2016;13:42 PMCID:PMC4915038

[431]

RaniP,GollaN,OnteruSK.Milk miRNAs encapsulated in exosomes are stable to human digestion and permeable to intestinal barrier in vitro.J Funct Foods2017;34:431-9

[432]

LönnerdalB.Human milk microRNAs/Exosomes: composition and biological effects. Composition and biological effects.Nestlé Nutr Inst Workshop Ser2019;90:83-92

[433]

LinD,XieM.Oral administration of bovine and porcine milk exosome alter miRNAs profiles in piglet serum.Sci Rep2020;10:6983 PMCID:PMC7181743

[434]

BenmoussaA.Milk MIcroRNAs in health and disease.Compr Rev Food Sci Food Saf2019;18:703-22

[435]

Carrillo-LozanoE,Knott-TorcalC.Circulating microRNAs in breast milk and their potential impact on the infant.Nutrients2020;12:3066 PMCID:PMC7601398

[436]

ChenZ,LuoJ.Milk exosome-derived miRNAs from water buffalo are implicated in immune response and metabolism process.BMC Vet Res2020;16:123 PMCID:PMC7191744

[437]

SadriM,KachmanSD,ZempleniJ.Milk exosomes and miRNA cross the placenta and promote embryo survival in mice.Reproduction2020;160:501-9

[438]

ReifS,Golan-GerstlR.Milk-derived exosomes (MDEs) have a different biological effect on normal fetal colon epithelial cells compared to colon tumor cells in a miRNA-dependent manner.J Transl Med2019;17:325 PMCID:PMC6767636

[439]

OzkanH,TaheriS.Epigenetic programming through breast milk and its impact on milk-siblings mating.Front Genet2020;11:569232 PMCID:PMC7565666

[440]

JinY,WangS,HalpinJC.The ER chaperones BiP and Grp94 regulate the formation of insulin-like growth factor 2 (IGF2) oligomers.J Mol Biol2021;433:166963

[441]

LuT,XuK.Co-downregulation of GRP78 and GRP94 induces apoptosis and inhibits migration in prostate cancer cells.Open Life Sci2019;14:384-91 PMCID:PMC7874808

[442]

Le Doare K, Holder B, Bassett A, Pannaraj PS. Mother's milk: a purposeful contribution to the development of the infant microbiota and immunity.Front Immunol2018;9:361 PMCID:PMC5863526

[443]

MelnikBC.MicroRNAs: milk's epigenetic regulators.Best Pract Res Clin Endocrinol Metab2017;31:427-42

[444]

StremmelW,MelnikBC.Milk exosomes prevent intestinal inflammation in a genetic mouse model of ulcerative colitis: a pilot experiment.Inflamm Intest Dis2020;5:117-23 PMCID:PMC7506232

[445]

van EschBCAM,AbbringS.The impact of milk and its components on epigenetic programming of immune function in early life and beyond: implications for allergy and asthma.Front Immunol2020;11:2141 PMCID:PMC7641638

[446]

ZempleniJ,SadriM.Biological activities of extracellular vesicles and their cargos from bovine and human milk in humans and implications for infants.J Nutr2017;147:3-10 PMCID:PMC5177735

[447]

ZempleniJ,ZhouF,MutaiE.Milk-derived exosomes and metabolic regulation.Annu Rev Anim Biosci2019;7:245-62

[448]

XieMY,SunJJ.Porcine milk exosome miRNAS attenuate LPS-induced apoptosis through inhibiting TLR4/NF-κB and p53 pathways in intestinal epithelial cells.J Agric Food Chem2019;67:9477-91

[449]

MelnikBC,WeiskirchenR,SchmitzG.Exosome-derived microRNAs of human milk and their effects on infant health and development.Biomolecules2021;11:851 PMCID:PMC8228670

[450]

MelnikBC.Exosomes of pasteurized milk: potential pathogens of Western diseases.J Transl Med2019;17:3 PMCID:PMC6317263

[451]

ChenX,LiH.Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products.Cell Res2010;20:1128-37

[452]

FrommB,LuY,WitwerKW.Human and cow have identical miR-21-5p and miR-30a-5p sequences, which are likely unsuited to study dietary uptake from cow milk.J Nutr2018;148:1506-7

[453]

miRBase. hsa-mir-21-5p nucleotide sequence. Available from: http://mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0000076 [Last accessed on 17 Dec 2021]

[454]

miRBase. bta-mir-21-5p nucleotide sequence. Available from: http://mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0003528 [Last accessed on 17 Dec 2021]

[455]

ArntzOJ,OliveiraMC.Oral administration of bovine milk derived extracellular vesicles attenuates arthritis in two mouse models.Mol Nutr Food Res2015;59:1701-12

[456]

MarquezRT,WendlandtEB.Correlation between microRNA expression levels and clinical parameters associated with chronic hepatitis C viral infection in humans.Lab Invest2010;90:1727-36

[457]

de Ceuninck van Capelle C, Spit M, Ten Dijke P. Current perspectives on inhibitory SMAD7 in health and disease.Crit Rev Biochem Mol Biol2020;55:691-715

[458]

LiL.Hypoxia-responsive miRNA-21-5p inhibits Runx2 suppression by targeting SMAD7 in MC3T3-E1 cells.J Cell Biochem2019;120:16867-75 PMCID:PMC6766843

[459]

KomoriT.Roles of Runx2 in skeletal development.Adv Exp Med Biol2017;962:83-93

[460]

XiongY,FanF.Exosomal hsa-miR-21-5p derived from growth hormone-secreting pituitary adenoma promotes abnormal bone formation in acromegaly.Transl Res2020;215:1-16

[461]

EdlundS,GrimsbyS.Interaction between Smad7 and beta-catenin: importance for transforming growth factor beta-induced apoptosis.Mol Cell Biol2005;25:1475-88 PMCID:PMC548008

[462]

ShoreP.A role for Runx2 in normal mammary gland and breast cancer bone metastasis.J Cell Biochem2005;96:484-9

[463]

VishalM,ThejaswiniG,SelvamuruganN.Role of Runx2 in breast cancer-mediated bone metastasis.Int J Biol Macromol2017;99:608-14

[464]

DoDN,DudemainePL.MicroRNA roles in signalling during lactation: an insight from differential expression, time course and pathway analyses of deep sequence data.Sci Rep2017;7:44605 PMCID:PMC5357959

[465]

BenmoussaA,ShanST.A subset of extracellular vesicles carries the bulk of microRNAs in commercial dairy cow's milk.J Extracell Vesicles2017;6:1401897 PMCID:PMC5994974

[466]

BenmoussaA,BeauparlantCJ,DroitA.Complexity of the microRNA transcriptome of cow milk and milk-derived extracellular vesicles isolated via differential ultracentrifugation.J Dairy Sci2020;103:16-29

[467]

Le GuillouS,LaubierJ.Characterization of Holstein and Normande whole milk miRNomes highlights breed specificities.Sci Rep2019;9:20345 PMCID:PMC6937266

[468]

van HerwijnenMJC,SnoekBL.Abundantly present miRNAs in milk-derived extracellular vesicles are conserved between mammals.Front Nutr2018;5:81 PMCID:PMC6153340

[469]

BraudM,ParkSD.Genome-wide microRNA binding site variation between extinct wild aurochs and modern cattle identifies candidate microRNA-regulated domestication genes.Front Genet2017;8:3 PMCID:PMC5281612

[470]

DoDN,LiR.Co-expression network and pathway analyses reveal important modules of miRNAs regulating milk yield and component traits.Int J Mol Sci2017;18:1560 PMCID:PMC5536048

[471]

miRBase. hsa-mir-148a-3p nucleotide sequence. Available from: http://mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0000243 [Last accessed on 17 Dec 2021]

[472]

miRBase. bta-mir-148a-3p nucleotide sequence. Available from: http://mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0004737 [Last accessed on 17 Dec 2021]

[473]

SanwlaniR,ChittiSV.Milk-derived extracellular vesicles in inter-organism, cross-species communication and drug delivery.Proteomes2020;8:11 PMCID:PMC7356197

[474]

MelnikBC.Milk exosomes and microRNAs: potential epigenetic regulators. In: Patel V, Preedy V, editors. Handbook of nutrition, diet, and epigenetics. Cham: Springer International Publishing; 2017. p. 1-28.

[475]

CaoH,ChenB.DNA demethylation upregulated Nrf2 expression in Alzheimer's disease cellular model.Front Aging Neurosci2015;7:244 PMCID:PMC4700271

[476]

BendavitG,HilmiK,BatistG.Nrf2 transcription factor can directly regulate mTOR: linking cytoprotective gene expression to a major metabolic regulator that generates Redox activity.J Biol Chem2016;291:25476-88 PMCID:PMC5207248

[477]

GaoW,SunJ.Ailanthone exerts anticancer effect by up-regulating miR-148a expression in MDA-MB-231 breast cancer cells and inhibiting proliferation, migration and invasion.Biomed Pharmacother2019;109:1062-9

[478]

TargetScanHuman, release 7.2. Available from: http://www.targetscan.org/cgi-bin/targetscan/vert_72/view_gene.cgi?rs=ENST00000287878.4&taxid=9606&members=miR-148-3p/152-3p&showcnc=0&shownc=0&shownc_nc=&showncf1=&showncf2=&subset=1 [Last accessed on 17 Dec 2021]

[479]

GwinnDM,EganDF.AMPK phosphorylation of raptor mediates a metabolic checkpoint.Mol Cell2008;30:214-26 PMCID:PMC2674027

[480]

OhS,SonSJ.Comparison of total RNA isolation methods for analysis of immune-related microRNAs in market milks.Korean J Food Sci Anim Resour2015;35:459-65 PMCID:PMC4662127

[481]

BaddelaVS,RaniP,SinghD.Physicochemical biomolecular insights into buffalo milk-derived nanovesicles.Appl Biochem Biotechnol2016;178:544-57

[482]

El Tayebi HM, Waly AA, Assal RA, Hosny KA, Esmat G, Abdelaziz AI. Transcriptional activation of the IGF-II/IGF-1R axis and inhibition of IGFBP-3 by miR-155 in hepatocellular carcinoma.Oncol Lett2015;10:3206-12 PMCID:PMC4665895

[483]

SunJF,GaoCJ,DaiQS.Exosome-mediated MiR-155 transfer contributes to hepatocellular carcinoma cell proliferation by targeting PTEN.Med Sci Monit Basic Res2019;25:218-28 PMCID:PMC6827328

[484]

TangB,QiG.MicroRNA-155-3p promotes hepatocellular carcinoma formation by suppressing FBXW7 expression.J Exp Clin Cancer Res2016;35:93 PMCID:PMC4910248

[485]

Target ScanHuman. FBXW7 ENST00000281708.4. Available from: http://www.targetscan.org/cgibin/targetscan/vert_72/view_gene.cgi?rs=ENST00000281708.4&taxid=9606&members=&showcnc=0&shownc=0&showncf1=&showncf2=&subset=1 [Last accessed on 17 Dec 2021]

[486]

MaoJH,WuD.FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression.Science2008;321:1499-502 PMCID:PMC2849753

[487]

YehCH,NicotC.FBXW7: a critical tumor suppressor of human cancers.Mol Cancer2018;17:115 PMCID:PMC6081812

[488]

LanR,LiuYZ,NiuT.Genome and transcriptome profiling of FBXW family in human prostate cancer.Am J Clin Exp Urol2020;8:116-28 PMCID:PMC7486541

[489]

BeltranH,ParkK.Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets.Cancer Discov2011;1:487-95 PMCID:PMC3290518

[490]

LiR,ZhaoX,Ibeagha-AwemuEM.Comparative analysis of the miRNome of Bovine milk fat, whey and cells.PLoS One2016;11:e0154129 PMCID:PMC4839614

[491]

AmmahAA,BissonnetteN,Ibeagha-AwemuEM.Co-expression network analysis identifies miRNA-mRNA networks potentially regulating milk traits and blood metabolites.Int J Mol Sci2018;19:2500 PMCID:PMC6164576

[492]

LeMT,Shyh-ChangN.MicroRNA-125b is a novel negative regulator of p53.Genes Dev2009;23:862-76 PMCID:PMC2666337

[493]

KumarM,TakwiAA.Negative regulation of the tumor suppressor p53 gene by microRNAs.Oncogene2011;30:843-53 PMCID:PMC3021102

[494]

MelnikBC.Milk disrupts p53 and DNMT1, the guardians of the genome: implications for acne vulgaris and prostate cancer.Nutr Metab (Lond)2017;14:55 PMCID:PMC5556685

[495]

ShiXB,MaAH,KungHJ.miR-125b promotes growth of prostate cancer xenograft tumor through targeting pro-apoptotic genes.Prostate2011;71:538-49 PMCID:PMC3017658

[496]

AmirS,ShiXB,KungHJ.Oncomir miR-125b suppresses p14(ARF) to modulate p53-dependent and p53-independent apoptosis in prostate cancer.PLoS One2013;8:e61064 PMCID:PMC3621663

[497]

DowningSR,JacksonP.Alterations of p53 are common in early stage prostate cancer.Can J Urol2003;10:1924-33

[498]

FengZ.p53 regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment.Cold Spring Harb Perspect Biol2010;2:a001057 PMCID:PMC2828273

[499]

BuckbinderL,Velasco-MiguelS.Induction of the growth inhibitor IGF-binding protein 3 by p53.Nature1995;377:646-9

[500]

FengZ,de StanchinaE.The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways.Cancer Res2007;67:3043-53

[501]

StambolicV,SasD.Regulation of PTEN transcription by p53.Mol Cell2001;8:317-25

[502]

FengZ,LevineAJ.The coordinate regulation of the p53 and mTOR pathways in cells.Proc Natl Acad Sci U S A2005;102:8204-9 PMCID:PMC1142118

[503]

LevineAJ,MakTW,JinS.Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways.Genes Dev2006;20:267-75

[504]

AlimirahF,ChenJ,HoSM.Expression of androgen receptor is negatively regulated by p53.Neoplasia2007;9:1152-9 PMCID:PMC2134911

[505]

HauptS,VijayakumaranR,HauptY.The long and the short of it: the MDM4 tail so far.J Mol Cell Biol2019;11:231-44 PMCID:PMC6478121

[506]

StegemanS,SelthLA,ClementsJA.A genetic variant of MDM4 influences regulation by multiple microRNAs in prostate cancer.Endocr Relat Cancer2015;22:265-76

[507]

KotaracN,MatijasevicS,BrajuskovicG.Association of KLK3, VAMP8 and MDM4 genetic variants within microRNA binding sites with prostate cancer: evidence from Serbian population.Pathol Oncol Res2020;26:2409-23

[508]

ElmarakebyHA,ArafehR.Biologically informed deep neural network for prostate cancer discovery.Nature2021;598:348-52 PMCID:PMC8514339

[509]

MecocciS,MilanesiM.Transcriptomic characterization of cow, donkey and goat milk extracellular vesicles reveals their anti-inflammatory and immunomodulatory potential.Int J Mol Sci2021;22:12759 PMCID:PMC8657891

[510]

CorreiaNC,AntunesI,BarataJT.The multiple layers of non-genetic regulation of PTEN tumour suppressor activity.Eur J Cancer2014;50:216-25

[511]

EguchiT,HaraES,KubokiT.OstemiR: a novel panel of microRNA biomarkers in osteoblastic and osteocytic differentiation from mesencymal stem cells.PLoS One2013;8:e58796 PMCID:PMC3606401

[512]

WolfT,ZempleniJ.The intestinal transport of bovine milk exosomes is mediated by endocytosis in human colon carcinoma Caco-2 cells and rat small intestinal IEC-6 cells.J Nutr2015;145:2201-6 PMCID:PMC4580964

[513]

CicchiniC,BattistelliC.Epigenetic control of EMT/MET dynamics: HNF4α impacts DNMT3s through miRs-29.Biochim Biophys Acta2015;1849:919-29 PMCID:PMC6319628

[514]

BianY,WangC.Epigenetic regulation of miR-29s affects the lactation activity of dairy cow mammary epithelial cells.J Cell Physiol2015;230:2152-63

[515]

ZhangJ,LiuX.Expression and potential role of microRNA-29b in mouse early embryo development.Cell Physiol Biochem2015;35:1178-87

[516]

ZhangZ,ZhaiY.MicroRNA-29b regulates DNA methylation by targeting Dnmt3a/3b and Tet1/2/3 in porcine early embryo development.Dev Growth Differ2018;60:197-204

[517]

MerseyBD,DannerDJ.Human microRNA (miR29b) expression controls the amount of branched chain alpha-ketoacid dehydrogenase complex in a cell.Hum Mol Genet2005;14:3371-7

[518]

HarrisRA,ZhaoY.Regulation of branched-chain amino acid catabolism.J Nutr1994;124:1499S-502S

[519]

DoeringCB,DannerDJ.Controlled overexpression of BCKD kinase expression: metabolic engineering applied to BCAA metabolism in a mammalian system.Metab Eng2000;2:349-56

[520]

ShimomuraY,MurakamiT.Regulation of branched-chain amino acid catabolism: nutritional and hormonal regulation of activity and expression of the branched-chain alpha-keto acid dehydrogenase kinase.Curr Opin Clin Nutr Metab Care2001;4:419-23

[521]

NellisMM,KasinskiA.Insulin increases branched-chain alpha-ketoacid dehydrogenase kinase expression in Clone 9 rat cells.Am J Physiol Endocrinol Metab2002;283:E853-60

[522]

NieC,ZhangW,MaX.Branched chain amino acids: beyond nutrition metabolism.Int J Mol Sci2018;19:954 PMCID:PMC5979320

[523]

NeinastM,AranyZ.Branched chain amino acids.Annu Rev Physiol2019;81:139-64 PMCID:PMC6536377

[524]

WorstTS,NitschkeK.miR-10a-5p and miR-29b-3p as extracellular vesicle-associated prostate cancer detection markers.Cancers (Basel)2019;12:43 PMCID:PMC7017198

[525]

LiZ,JafferjiM.Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation.J Biol Chem2009;284:15676-84 PMCID:PMC2708864

[526]

KomoriT.Regulation of proliferation, differentiation and functions of osteoblasts by Runx2.Int J Mol Sci2019;20:1694 PMCID:PMC6480215

[527]

KomoriT.Molecular mechanism of Runx2-dependent bone development.Mol Cells2020;43:168-75 PMCID:PMC7057844

[528]

PratapJ,JavedA.Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone.Cancer Metastasis Rev2006;25:589-600

[529]

zur Hausen H, de Villiers EM. Dairy cattle serum and milk factors contributing to the risk of colon and breast cancers.Int J Cancer2015;137:959-67

[530]

FalidaK,GunstK,de VilliersEM.Isolation of two virus-like circular DNAs from commercially available milk samples.Genome Announc2017;5:e00266-17 PMCID:PMC5408121

[531]

zur Hausen H, Bund T, de Villiers E. Infectious agents in bovine red meat and milk and their potential role in cancer and other chronic diseases.Curr Top Microbiol Immunol2017;407:83-116

[532]

EilebrechtS,SarachagaV.Expression and replication of virus-like circular DNA in human cells.Sci Rep2018;8:2851 PMCID:PMC5809378

[533]

Zur Hausen H, Bund T, de Villiers EM. Specific nutritional infections early in life as risk factors for human colon and breast cancers several decades later.Int J Cancer2019;144:1574-83

[534]

de Villiers EM, Gunst K, Chakraborty D, Ernst C, Bund T, Zur Hausen H. A specific class of infectious agents isolated from bovine serum and dairy products and peritumoral colon cancer tissue.Emerg Microbes Infect2019;8:1205-18 PMCID:PMC6713099

[535]

BundT,ChakrabortyD.Analysis of chronic inflammatory lesions of the colon for BMMF Rep antigen expression and CD68 macrophage interactions.Proc Natl Acad Sci U S A2021;118:e2025830118 PMCID:PMC8000208

[536]

de Villiers EM, Zur Hausen H. Bovine meat and milk factors (BMMFs): their proposed role in common human cancers and type 2 diabetes mellitus.Cancers (Basel)2021;13:5407 PMCID:PMC8582480

[537]

PrandiniA,SigoloS,LaportaM.On the occurrence of aflatoxin M1 in milk and dairy products.Food Chem Toxicol2009;47:984-91

[538]

IsmailA,LevinRE,RiazM.Aflatoxin M1: prevalence and decontamination strategies in milk and milk products.Crit Rev Microbiol2016;42:418-27

[539]

HofH.Mycotoxins in milk for human nutrition: cow, sheep and human breast milk.GMS Infect Dis2016;4:Doc03 PMCID:PMC6301711

[540]

Marimón SibajaKV,GarciaSO.Aflatoxin M1 and B1 in Colombian milk powder and estimated risk exposure.Food Addit Contam Part B Surveill2019;12:97-104

[541]

Van der Fels-Klerx HJ, Vermeulen LC, Gavai AK, Liu C. Climate change impacts on aflatoxin B1 in maize and aflatoxin M1 in milk: a case study of maize grown in Eastern Europe and imported to the Netherlands.PLoS One2019;14:e0218956 PMCID:PMC6597076

[542]

CastegnaroM.IARC activities in mycotoxin research.Nat Toxins1995;3:327-31; discussion 341

[543]

IARC monographs on the identification of carcinogenic hazards to humans. Available from: https://monographs.iarc.fr/list-of-classifications (last updated 2020-03-03) [Last accessed on 17 Dec 2021]

[544]

MarcheseS,ArianoA,CostantiniS.Aflatoxin B1 and M1: biological properties and their involvement in cancer development.Toxins (Basel)2018;10:214 PMCID:PMC6024316

[545]

VazA,RodriguesP.Detection methods for aflatoxin M1 in dairy products.Microorganisms2020;8:246 PMCID:PMC7074771

[546]

NguyenT,PalmerJ.Control of aflatoxin M1 in milk by novel methods: a review.Food Chem2020;311:125984

[547]

ScaglioniPT,DrunklerD.Aflatoxin B1 and M1 in milk.Anal Chim Acta2014;829:68-74

[548]

SmithER.Uptake and secretion of carcinogenic chemicals by the dog and rat prostate.Prog Clin Biol Res1981;75B:131-63

[549]

NishiN,MiyanakaH.Androgen-regulated expression of a novel member of the aldo-keto reductase superfamily in regrowing rat prostate.Endocrinology2000;141:3194-9

[550]

JinY.Aldo-keto reductases and bioactivation/detoxication.Annu Rev Pharmacol Toxicol2007;47:263-92

[551]

KnightLP,GroopmanJD,SutterTR.cDNA cloning, expression and activity of a second human aflatoxin B1-metabolizing member of the aldo-keto reductase superfamily, AKR7A3.Carcinogenesis1999;20:1215-23

[552]

YepuruM,KulkarniA.Steroidogenic enzyme AKR1C3 is a novel androgen receptor-selective coactivator that promotes prostate cancer growth.Clin Cancer Res2013;19:5613-25

[553]

KarunasingheN,WangA.Influence of lifestyle and genetic variants in the aldo-keto reductase 1C3 rs12529 polymorphism in high-risk prostate cancer detection variability assessed between US and New Zealand cohorts.PLoS One2018;13:e0199122 PMCID:PMC6007906

[554]

KarunasingheN,GamageA.Interaction between leukocyte aldo-keto reductase 1C3 activity, genotypes, biological, lifestyle and clinical features in a prostate cancer cohort from New Zealand.PLoS One2019;14:e0217373 PMCID:PMC6534310

[555]

CuiA,ShaoT.Aflatoxin B1 induces Src phosphorylation and stimulates lung cancer cell migration.Tumour Biol2015;36:6507-13

[556]

SaadF.SRC kinase inhibition: targeting bone metastases and tumor growth in prostate and breast cancer.Cancer Treat Rev2010;36:177-84

[557]

PosadasEM,KarrisonT.Saracatinib as a metastasis inhibitor in metastatic castration-resistant prostate cancer: a University of Chicago Phase 2 Consortium and DOD/PCF Prostate Cancer Clinical Trials Consortium Study.Prostate2016;76:286-93 PMCID:PMC4904773

[558]

LiW,WangL.Effectiveness of inhibitor rapamycin, saracatinib, linsitinib and JNJ-38877605 against human prostate cancer cells.Int J Clin Exp Med2015;8:6563-7 PMCID:PMC4483836

[559]

ChakrabortyG,HiraniR.Attenuation of SRC kinase activity augments PARP inhibitor-mediated synthetic lethality in BRCA2-altered prostate tumors.Clin Cancer Res2021;27:1792-806 PMCID:PMC7956224

[560]

FrancisJC.Prostate organogenesis.Cold Spring Harb Perspect Med2018;8:a030353 PMCID:PMC6027935

[561]

MarkerPC,DahiyaR.Hormonal, cellular, and molecular control of prostatic development.Dev Biol2003;253:165-74

[562]

StaackA,BrodyJ,CarrollP.Mouse urogenital development: a practical approach.Differentiation2003;71:402-13

[563]

ThomsonAA.Branching morphogenesis in the prostate gland and seminal vesicles.Differentiation2006;74:382-92

[564]

RuanW,KopchickJJ.Evidence that insulin-like growth factor I and growth hormone are required for prostate gland development.Endocrinology1999;140:1984-9

[565]

KleinbergDL,YeeD,VidalS.Insulin-like growth factor (IGF)-I controls prostate fibromuscular development: IGF-I inhibition prevents both fibromuscular and glandular development in eugonadal mice.Endocrinology2007;148:1080-8

[566]

OhlsonN,PerssonML.Castration rapidly decreases local insulin-like growth factor-1 levels and inhibits its effects in the ventral prostate in mice.Prostate2006;66:1687-97

[567]

OhlssonC,SjögrenK.The role of liver-derived insulin-like growth factor-I.Endocr Rev2009;30:494-535 PMCID:PMC2759708

[568]

BanjacL,GojkovićT,BanjacG.Relationship between insulin-like growth factor type 1 and intrauterine growth.Acta Clin Croat2020;59:91-6 PMCID:PMC7382880

[569]

SingalSS,GrattonR,GuptaMB.Increased insulin-like growth factor binding protein-1 phosphorylation in decidualized stromal mesenchymal cells in human intrauterine growth restriction placentas.J Histochem Cytochem2018;66:617-30 PMCID:PMC6116087

[570]

AgrogiannisGD,PatsourisES.Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review).Mol Med Rep2014;10:579-84 PMCID:PMC4094767

[571]

GhoshS,SimonsBW.PI3K/mTOR signaling regulates prostatic branching morphogenesis.Dev Biol2011;360:329-42 PMCID:PMC3225010

[572]

LiY,FranceschiRT.Role of Runx2 in prostate development and stem cell function.Prostate2021;81:231-41 PMCID:PMC7856111

[573]

VoermanE,GeurtsenML.Maternal first-trimester cow-milk intake is positively associated with childhood general and abdominal visceral fat mass and lean mass but not with other cardiometabolic risk factors at the age of 10 Years.J Nutr2021;151:1965-75 PMCID:PMC8245880

[574]

RolandMC,VoldnerN.Fetal growth versus birthweight: the role of placenta versus other determinants.PLoS One2012;7:e39324 PMCID:PMC3377679

[575]

TibblinG,CnattingiusS.High birthweight as a predictor of prostate cancer risk.Epidemiology1995;6:423-4

[576]

ErikssonM,WallanderMA.The impact of birth weight on prostate cancer incidence and mortality in a population-based study of men born in 1913 and followed up from 50 to 85 years of age.Prostate2007;67:1247-54

[577]

ZhouCK,WelshJ.Is birthweight associated with total and aggressive/lethal prostate cancer risks?.Br J Cancer2016;114:839-48 PMCID:PMC4955914

[578]

CnattingiusS,SandinS,IliadouA.Birth characteristics and risk of prostate cancer: the contribution of genetic factors.Cancer Epidemiol Biomarkers Prev2009;18:2422-6

[579]

LahmannPH,LissnerL,GullbergB.Measures of birth size in relation to risk of prostate cancer: the Malmö Diet and Cancer Study, Sweden.J Dev Orig Health Dis2012;3:442-9

[580]

HeppeDH,WillemsenSP.Maternal milk consumption, fetal growth, and the risks of neonatal complications: the Generation R Study.Am J Clin Nutr2011;94:501-9

[581]

OlsenSF,WillettWC.NUTRIX ConsortiumMilk consumption during pregnancy is associated with increased infant size at birth: prospective cohort study.Am J Clin Nutr2007;86:1104-10

[582]

BrantsæterAL,ForsumE,ThorsdottirI.Does milk and dairy consumption during pregnancy influence fetal growth and infant birthweight?.Food Nutr Res2012;56:20050 PMCID:PMC3505908

[583]

MelnikBC,SchmitzG.Milk consumption during pregnancy increases birth weight, a risk factor for the development of diseases of civilization.J Transl Med2015;13:13 PMCID:PMC4302093

[584]

AchónM,García-GonzálezÁ,Varela-MoreirasG.Effects of milk and dairy product consumption on pregnancy and lactation outcomes: a systematic review.Adv Nutr2019;10:S74-87 PMCID:PMC6518133

[585]

JiangH,ZhangM.Aberrant upregulation of miR-21 in placental tissues of macrosomia.J Perinatol2014;34:658-63

[586]

ZhangJT,JiSS.Decreased miR-143 and increased miR-21 placental expression levels are associated with macrosomia.Mol Med Rep2016;13:3273-80

[587]

WenHY,KellemsRE.mTOR: a placental growth signaling sensor.Placenta2005;26 Suppl A:S63-9

[588]

RoosS,WennergrenM,JanssonT.Regulation of amino acid transporters by glucose and growth factors in cultured primary human trophoblast cells is mediated by mTOR signaling.Am J Physiol Cell Physiol2009;297:C723-31

[589]

JanssonT,GoberdhanDC.The emerging role of mTORC1 signaling in placental nutrient-sensing.Placenta2012;33 Suppl 2:e23-9 PMCID:PMC3463762

[590]

RosarioFJ,PowellTL.Mammalian target of rapamycin signalling modulates amino acid uptake by regulating transporter cell surface abundance in primary human trophoblast cells.J Physiol2013;591:609-25 PMCID:PMC3577540

[591]

XuJ,WangJ,QianX.Regulation of human trophoblast GLUT3 glucose transporter by mammalian target of rapamycin signaling.Int J Mol Sci2015;16:13815-28 PMCID:PMC4490525

[592]

RosarioFJ,GuptaMB,JanssonT.mTORC1 transcriptional regulation of ribosome subunits, protein synthesis, and molecular transport in primary human trophoblast cells.Front Cell Dev Biol2020;8:583801 PMCID:PMC7726231

[593]

CookMB,AarestrupJ,BakerJL.Childhood height and birth weight in relation to future prostate cancer risk: a cohort study based on the copenhagen school health records register.Cancer Epidemiol Biomarkers Prev2013;22:2232-40 PMCID:PMC3863763

[594]

AarestrupJ,CookMB.Childhood height increases the risk of prostate cancer mortality.Eur J Cancer2015;51:1340-5 PMCID:PMC5584054

[595]

AarestrupJ,MeyleKD.Birthweight, childhood overweight, height and growth and adult cancer risks: a review of studies using the Copenhagen School Health Records Register.Int J Obes (Lond)2020;44:1546-60

[596]

BjerregaardLG,GamborgM,TjønnelandA.Childhood height, adult height, and the risk of prostate cancer.Cancer Causes Control2016;27:561-7 PMCID:PMC4796358

[597]

AlimujiangA,GardnerJD,BerkeyCS.Childhood diet and growth in boys in relation to timing of puberty and adult height: the Longitudinal Studies of Child Health and Development.Cancer Causes Control2018;29:915-26 PMCID:PMC6192524

[598]

WileyAS.Consumption of milk, but not other dairy products, is associated with height among US preschool children in NHANES 1999-2002.Ann Hum Biol2009;36:125-38

[599]

WileyAS.Does milk make children grow?.Am J Hum Biol2005;17:425-41

[600]

AlmonR,SjöströmM.Lactase persistence and milk consumption are associated with body height in Swedish preadolescents and adolescents.Food Nutr Res2011;55:7253 PMCID:PMC3169089

[601]

MelnikBC.Evidence for acne-promoting effects of milk and other insulinotropic dairy products.Nestle Nutr Workshop Ser Pediatr Program2011;67:131-45

[602]

AdebamowoCA,DanbyFW,WillettWC.High school dietary dairy intake and teenage acne.J Am Acad Dermatol2005;52:207-14

[603]

AdebamowoCA,BerkeyCS.Milk consumption and acne in adolescent girls.Dermatol Online J2006;12

[604]

AdebamowoCA,BerkeyCS.Milk consumption and acne in teenaged boys.J Am Acad Dermatol2008;58:787-93 PMCID:PMC4391699

[605]

JuhlCR,MillerIM,KantersJK.Dairy intake and acne vulgaris: a systematic review and meta-analysis of 78,529 children, adolescents, and young adults.Nutrients2018;10:1049 PMCID:PMC6115795

[606]

AghasiM,Shab-BidarS,OmidianM.Dairy intake and acne development: a meta-analysis of observational studies.Clin Nutr2019;38:1067-75

[607]

DaiR,ChenW,LiL.The effect of milk consumption on acne: a meta-analysis of observational studies.J Eur Acad Dermatol Venereol2018;32:2244-53

[608]

RobevaR,TomovaA.Acne vulgaris is associated with intensive pubertal development and altitude of residence-a cross-sectional population-based study on 6,200 boys.Eur J Pediatr2013;172:465-71

[609]

MelnikBC.Potential role of FoxO1 and mTORC1 in the pathogenesis of Western diet-induced acne.Exp Dermatol2013;22:311-5 PMCID:PMC3746128

[610]

MonfrecolaG,CaiazzoG.Mechanistic target of rapamycin (mTOR) expression is increased in acne patients' skin.Exp Dermatol2016;25:153-5

[611]

AgamiaNF,SorourO,YounanDN.Skin expression of mammalian target of rapamycin and forkhead box transcription factor O1, and serum insulin-like growth factor-1 in patients with acne vulgaris and their relationship with diet.Br J Dermatol2016;174:1299-307

[612]

GalobardesB,JeffreysM,McCarronP.Acne in adolescence and cause-specific mortality: lower coronary heart disease but higher prostate cancer mortality: the Glasgow Alumni Cohort Study.Am J Epidemiol2005;161:1094-101

[613]

SutcliffeS,IsaacsWB,PlatzEA.Acne and risk of prostate cancer.Int J Cancer2007;121:2688-92 PMCID:PMC3076591

[614]

UggeH,CarlssonJ.Acne in late adolescence and risk of prostate cancer.Int J Cancer2018;142:1580-5 PMCID:PMC5838533

[615]

TatePL,LarcomLL.Milk stimulates growth of prostate cancer cells in culture.Nutr Cancer2011;63:1361-6

[616]

ParkSW,KimYS,LeeSD.A milk protein, casein, as a proliferation promoting factor in prostate cancer cells.World J Mens Health2014;32:76-82 PMCID:PMC4166373

[617]

GordonWG,CableRS.Amino acid composition of α-casein and β-casein2.J Am Chem Soc1949;71:3293-7

[618]

KimJY,LeeSD.α-casein changes gene expression profiles and promotes tumorigenesis of prostate cancer cells.Nutr Cancer2020;72:239-51

[619]

BernichteinS,CapiodT.High milk consumption does not affect prostate tumor progression in two mouse models of benign and neoplastic lesions.PLoS One2015;10:e0125423 PMCID:PMC4418739

[620]

LarssonSC,KarS.Genetically proxied milk consumption and risk of colorectal, bladder, breast, and prostate cancer: a two-sample Mendelian randomization study.BMC Med2020;18:370 PMCID:PMC7709312

[621]

ClausnitzerJ. Statista. Per capita consumption of milk in Finland 2010-2020. Available from: https://www.statista.com/statistics/460031/per-capita-consumption-of-milk-in-finland/ [Last accessed on 17 Dec 2021]

[622]

VissersLET,van der SchouwYT.Dairy product intake and risk of type 2 diabetes in EPIC-interAct: a mendelian randomization study.Diabetes Care2019;42:568-75 PMCID:PMC7340535

[623]

Kitsiou-TzeliS.Maternal epigenetics and fetal and neonatal growth.Curr Opin Endocrinol Diabetes Obes2017;24:43-6

[624]

CullenSM,Smith-RaskaM.Effects of noninherited ancestral genotypes on offspring phenotypes†.Biol Reprod2021;105:747-60

[625]

GodosGodos J,GhelfiF.Dairy foods and health: an umbrella review of observational studies.Int J Food Sci Nutr2020;71:138-51

[626]

Cavero-RedondoI,Sotos-PrietoM,Martinez-VizcainoV.Milk and dairy product consumption and risk of mortality: an overview of systematic reviews and meta-analyses.Adv Nutr2019;10:S97-S104 PMCID:PMC6518134

[627]

López-PlazaB,SanturinoC,Álvarez-BuenoC.Milk and dairy product consumption and prostate cancer risk and mortality: an overview of systematic reviews and meta-analyses.Adv Nutr2019;10:S212-23 PMCID:PMC6518142

[628]

OngSL,HainesS.Ruminant milk-derived extracellular vesicles: a nutritional and therapeutic opportunity?.Nutrients2021;13:2505 PMCID:PMC8398904

[629]

ZhangY,HouJ.Loss of bioactive microRNAs in cow's milk by ultra-high-temperature treatment but not by pasteurization treatment.J Sci Food Agric2021;

[630]

The American College of Obstreticians and Gynecologists. Nutrition during pregnancy. Available from: https://www.acog.org/womens-health/faqs/nutrition-during-pregnancy [Last accessed on 17 Dec 2021]

[631]

John Hopkins Medicine. Eating safely during pregnancy. Available from: https://www.hopkinsmedicine.org/health/wellness-and-prevention/-/media/ksw-images/eatingsafely [Last accessed on 17 Dec 2021]

[632]

MelnikBC.Androgen abuse in the community.Curr Opin Endocrinol Diabetes Obes2009;16:218-23

[633]

GovernmentUK. Guidance. Eligibility for the school milk subsidy scheme - milk consumed from 1 January 2021. Available from: https://www.gov.uk/guidance/eligibility-for-the-school-milk-subsidy-scheme-milk-consumed-from-1-january-2021 [Last accessed on 17 Dec 2021]

[634]

AgostoniC.Is cow's milk harmful to a child's health?.J Pediatr Gastroenterol Nutr2011;53:594-600

[635]

EverettS,GalmerL,LaneJ.Diet and nutrition in orthopedics. In: Rajendram R, Preedy VR, Patel VB, editors. Diet and nutrition in critical care. New York: Springer; 2014. p. 1-20.

[636]

FardelloneP,BlainH,ThomasT.GRIO Scientific CommitteeOsteoporosis: is milk a kindness or a curse?.Joint Bone Spine2017;84:275-81

[637]

SamuelM,SanwlaniR.Oral administration of bovine milk-derived extracellular vesicles induces senescence in the primary tumor but accelerates cancer metastasis.Nat Commun2021;12:3950 PMCID:PMC8225634

AI Summary AI Mindmap
PDF

53

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/