PDF
Abstract
Treatment-associated small cell neuroendocrine carcinoma of the prostate (t-SCNC) is an aggressive prostate cancer variant with rising incidence. Although morphologically similar to de novo small cell prostate cancer, t-SCNC is thought to emerge from metastatic castration-resistant prostate cancer (mCRPC) under the selective pressure of prolonged AR-targeted therapies. t-SCNC is associated with a distinct transcriptional landscape, characterized by the upregulation of stem cell-associated and neuronal programs (e.g., SOX2, N-MYC, FOXA2) and decreased canonical AR signaling. In addition, as with other neuroendocrine carcinomas, RB1 loss and inactivating TP53 mutations are key genomic hallmarks of t-SCNC. Nevertheless, despite their histologic, molecular, and clinical differences, there is a striking degree of genomic overlap between t-SCNC and its adenocarcinoma counterpart. This finding underscores the clonal evolution of t-SCNC from mCRPC, as well as the importance of epigenetic mechanisms in regulating tumor phenotype. In this review, we summarize the key genomic, transcriptional, and epigenetic features of t-SCNC and discuss how recent advances in our understanding of molecular drivers of t-SCNC have contributed to improving the diagnosis and treatment of this aggressive disease.
Keywords
Castration-resistant prostate cancer
/
epigenetics
/
lineage plasticity
/
molecular genetics
/
neuroendocrine prostate cancer
/
small cell carcinoma
/
prostate
Cite this article
Download citation ▾
Ivan de Kouchkovsky, David A. Quigley, Eric J. Small, Rahul Aggarwal.
Genomic characterization of treatment-associated small cell neuroendocrine carcinoma of the prostate.
Journal of Translational Genetics and Genomics, 2021, 5(3): 265-77 DOI:10.20517/jtgg.2021.32
| [1] |
WelchHG.Reconsidering prostate cancer mortality - the future of PSA screening.N Engl J Med2020;382:1557-63
|
| [2] |
SiegelRL,JemalA.Cancer statistics, 2019.CA Cancer J Clin2018;69:7-34
|
| [3] |
BeltranH,MosqueraJM.Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer.Nat Med2016;22:298-305 PMCID:PMC4777652
|
| [4] |
AparicioAM,CornPG.Platinum-based chemotherapy for variant castrate-resistant prostate cancer.Clin Cancer Res2013;19:3621-30 PMCID:PMC3699964
|
| [5] |
ConteducaV,EngKW.Clinical features of neuroendocrine prostate cancer.Eur J Cancer2019;121:7-18 PMCID:PMC6803064
|
| [6] |
SpiessPE,Vakar-LopezF.Treatment outcomes of small cell carcinoma of the prostate: a single-center study.Cancer2007;110:1729-37
|
| [7] |
TětuB,AyalaAG,LogothetisCJ.Small cell carcinoma of the prostate part I a clinicopathologic study of 20 cases.Cancer1987;59:1803-9
|
| [8] |
EpsteinJI,BeltranH.Proposed morphologic classification of prostate cancer with neuroendocrine differentiation.Am J Surg Pathol2014;38:756-67 PMCID:PMC4112087
|
| [9] |
DongB,WangY.Single-cell analysis supports a luminal-neuroendocrine transdifferentiation in human prostate cancer.Commun Biol2020;3:778 PMCID:PMC7745034
|
| [10] |
Turbat-HerreraEA,GoreI,GrizzleWE.Neuroendocrine differentiation in prostatic carcinomas. A retrospective autopsy study.Arch Pathol Lab Med1988;112:1100-5
|
| [11] |
AggarwalR,AlumkalJJ.Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate cancer: a multi-institutional prospective study.J Clin Oncol2018;36:2492-503 PMCID:PMC6366813
|
| [12] |
AparicioAM,TapiaEL.Combined tumor suppressor defects characterize clinically defined aggressive variant prostate cancers.Clin Cancer Res2016;22:1520-30 PMCID:PMC4794379
|
| [13] |
GeorgeJ,JangSJ.Comprehensive genomic profiles of small cell lung cancer.Nature2015;524:47-53 PMCID:PMC4861069
|
| [14] |
AggarwalRR,HuangJ.Whole-genome and transcriptional analysis of treatment-emergent small-cell neuroendocrine prostate cancer demonstrates intraclass heterogeneity.Mol Cancer Res2019;17:1235-40 PMCID:PMC6548614
|
| [15] |
QuigleyDA,ZhaoSG.Genomic hallmarks and structural variation in metastatic prostate cancer.Cell2018;174:758-69.e9 PMCID:PMC6425931
|
| [16] |
Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer.Cell2015;163:1011-25
|
| [17] |
RobinsonD,WuYM.Integrative clinical genomics of advanced prostate cancer.Cell2015;161:1215-28 PMCID:PMC4484602
|
| [18] |
SchlerethK,KrampitzAM.Characterization of the p53 cistrome--DNA binding cooperativity dissects p53's tumor suppressor functions.PLoS Genet2013;9:e1003726 PMCID:PMC3744428
|
| [19] |
MacleodKF.The RB tumor suppressor: a gatekeeper to hormone independence in prostate cancer?.J Clin Invest2010;120:4179-82 PMCID:PMC2993607
|
| [20] |
NavaRodrigues D,RomanelA.RB1 heterogeneity in advanced metastatic castration-resistant prostate cancer.Clin Cancer Res2019;25:687-97
|
| [21] |
NyquistMD,ColemanI.Combined TP53 and RB1 loss promotes prostate cancer resistance to a spectrum of therapeutics and confers vulnerability to replication stress.Cell Rep2020;31:107669 PMCID:PMC7453577
|
| [22] |
SowalskyAG,BhasinM.Neoadjuvant-intensive androgen deprivation therapy selects for prostate tumor foci with diverse subclonal oncogenic alterations.Cancer Res2018;78:4716-30 PMCID:PMC6095796
|
| [23] |
MuP,BenelliM.SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer.Science2017;355:84-8 PMCID:PMC5247742
|
| [24] |
KuSY,WangY.Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance.Science2017;355:78-83 PMCID:PMC5367887
|
| [25] |
KaretaMS,HafeezS.Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis.Cell Stem Cell2015;16:39-50 PMCID:PMC4389904
|
| [26] |
SoundararajanR,LogothetisCJ,MaitySN.Function of tumor suppressors in resistance to antiandrogen therapy and luminal epithelial plasticity of aggressive variant neuroendocrine prostate cancers.Front Oncol2018;8:69 PMCID:PMC5862804
|
| [27] |
ParkJW,SheuKM.Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage.Science2018;362:91-5 PMCID:PMC6414229
|
| [28] |
ZouM,MitrofanovaA.Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration-resistant prostate cancer.Cancer Discov2017;7:736-49 PMCID:PMC5501744
|
| [29] |
BeltranH,ConteducaV.Circulating tumor DNA profile recognizes transformation to castration-resistant neuroendocrine prostate cancer.J Clin Invest2020;130:1653-68 PMCID:PMC7108892
|
| [30] |
AdamsEJ,HooverE.FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes.Nature2019;571:408-12 PMCID:PMC6661172
|
| [31] |
SmithBA,UzunangelovV.A basal stem cell signature identifies aggressive prostate cancer phenotypes.Proc Natl Acad Sci U S A2015;112:E6544-52 PMCID:PMC4664352
|
| [32] |
LabrecqueMP,BrownLG.Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer.J Clin Invest2019;129:4492-505 PMCID:PMC6763249
|
| [33] |
SchaeferT.SOX2 protein biochemistry in stemness, reprogramming, and cancer: the PI3K/AKT/SOX2 axis and beyond.Oncogene2020;39:278-92 PMCID:PMC6949191
|
| [34] |
TakahashiK.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Cell2006;126:663-76
|
| [35] |
KregelS,RosenAM.Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer.PLoS One2013;8:e53701 PMCID:PMC3543364
|
| [36] |
AkamatsuS,LinD.The placental gene PEG10 Promotes progression of neuroendocrine prostate cancer.Cell Rep2015;12:922-36
|
| [37] |
KimS,BidnurS.PEG10 is associated with treatment-induced neuroendocrine prostate cancer.J Mol Endocrinol2019;63:39-49
|
| [38] |
VermaS,KalayciFNC.Androgen deprivation induces transcriptional reprogramming in prostate cancer cells to develop stem cell-like characteristics.Int J Mol Sci2020;21:9568 PMCID:PMC7765584
|
| [39] |
KwonOJ,JiaD.Sox2 is necessary for androgen ablation-induced neuroendocrine differentiation from Pten null Sca-1+ prostate luminal cells.Oncogene2021;40:203-14 PMCID:PMC7796948
|
| [40] |
LiH,LiZ.SOX2 has dual functions as a regulator in the progression of neuroendocrine prostate cancer.Lab Invest2020;100:570-82
|
| [41] |
BergerA,BarejaR.N-Myc-mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer.J Clin Invest2019;129:3924-40 PMCID:PMC6715370
|
| [42] |
DardenneE,BenelliM.N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer.Cancer Cell2016;30:563-77 PMCID:PMC5540451
|
| [43] |
YinY,ChangY.N-Myc promotes therapeutic resistance development of neuroendocrine prostate cancer by differentially regulating miR-421/ATM pathway.Mol Cancer2019;18:11 PMCID:PMC6337850
|
| [44] |
ZhangW,WuW.Targeting the MYCN-PARP-DNA damage response pathway in neuroendocrine prostate cancer.Clin Cancer Res2018;24:696-707 PMCID:PMC5823274
|
| [45] |
ParoliaA,ChuSC.Distinct structural classes of activating FOXA1 alterations in advanced prostate cancer.Nature2019;571:413-8 PMCID:PMC6661908
|
| [46] |
KimJ,ZhaoJC.FOXA1 inhibits prostate cancer neuroendocrine differentiation.Oncogene2017;36:4072-80 PMCID:PMC5509480
|
| [47] |
BacaSC,SeoJH.Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer.Nat Commun2021;12:1979 PMCID:PMC8010057
|
| [48] |
MirosevichJ,MatusikRJ.Expression of Foxa transcription factors in the developing and adult murine prostate.Prostate2005;62:339-52
|
| [49] |
LeeJK,SmithBA.N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells.Cancer Cell2016;29:536-47 PMCID:PMC4829466
|
| [50] |
ChiaverottiT,DonjacourA.Dissociation of epithelial and neuroendocrine carcinoma lineages in the transgenic adenocarcinoma of mouse prostate model of prostate cancer.Am J Pathol2008;172:236-46 PMCID:PMC2189611
|
| [51] |
ParkJW,WitteON.FOXA2 is a sensitive and specific marker for small cell neuroendocrine carcinoma of the prostate.Mod Pathol2017;30:1262-72 PMCID:PMC6330177
|
| [52] |
LiuQ,WangLA.Histone demethylase PHF8 drives neuroendocrine prostate cancer progression by epigenetically upregulating FOXA2.J Pathol2021;253:106-18 PMCID:PMC7756255
|
| [53] |
QiJ,CardiffRD.Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors.Cancer Cell2010;18:23-38 PMCID:PMC2919332
|
| [54] |
RotinenM,YangJ.ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis.Nat Med2018;24:1887-98 PMCID:PMC6614557
|
| [55] |
GuoH,AhmedM.ONECUT2 is a driver of neuroendocrine prostate cancer.Nat Commun2019;10:278 PMCID:PMC6336817
|
| [56] |
KlebB,ZhangJ.Differentially methylated genes and androgen receptor re-expression in small cell prostate carcinomas.Epigenetics2016;11:184-93 PMCID:PMC4854553
|
| [57] |
ZhaoSG,LiH.The DNA methylation landscape of advanced prostate cancer.Nat Genet2020;52:778-89 PMCID:PMC7454228
|
| [58] |
ChoiSYC,LinD.Targeting MCT4 to reduce lactic acid secretion and glycolysis for treatment of neuroendocrine prostate cancer.Cancer Med2018;7:3385-92 PMCID:PMC6051138
|
| [59] |
LiW,SunY.The role of CD44 in glucose metabolism in prostatic small cell neuroendocrine carcinoma.Mol Cancer Res2016;14:344-53 PMCID:PMC4834240
|
| [60] |
Reina-CamposM,DuranA.Increased serine and one-carbon pathway metabolism by PKCλ/ι deficiency promotes neuroendocrine prostate cancer.Cancer Cell2019;35:385-400.e9 PMCID:PMC6424636
|
| [61] |
ClermontPL,CreaF.Polycomb-mediated silencing in neuroendocrine prostate cancer.Clin Epigenetics2015;7:40 PMCID:PMC4391120
|
| [62] |
PucaL,PrandiD.Patient derived organoids to model rare prostate cancer phenotypes.Nat Commun2018;9:2404 PMCID:PMC6008438
|
| [63] |
ShanJ,Al-KowariMK.Targeting Wnt/EZH2/microRNA-708 signaling pathway inhibits neuroendocrine differentiation in prostate cancer.Cell Death Discov2019;5:139 PMCID:PMC6768854
|
| [64] |
ZhangY,ZhouT.Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREB-EZH2-TSP1 pathway in prostate cancers.Nat Commun2018;9:4080 PMCID:PMC6172226
|
| [65] |
LiY,SahinalpC.SRRM4 drives neuroendocrine transdifferentiation of prostate adenocarcinoma under androgen receptor pathway inhibition.Eur Urol2017;71:68-78
|
| [66] |
CavadasMA,CrifoB.REST is a hypoxia-responsive transcriptional repressor.Sci Rep2016;6:31355 PMCID:PMC4987654
|
| [67] |
LapukAV,WyattAW.From sequence to molecular pathology, and a mechanism driving the neuroendocrine phenotype in prostate cancer.J Pathol2012;227:286-97 PMCID:PMC3659819
|
| [68] |
ChangYT,CampbellM.REST is a crucial regulator for acquiring EMT-like and stemness phenotypes in hormone-refractory prostate cancer.Sci Rep2017;7:42795 PMCID:PMC5335619
|
| [69] |
JiaL,JariwalaU.Genomic androgen receptor-occupied regions with different functions, defined by histone acetylation, coregulators and transcriptional capacity.PLoS One2008;3:e3645 PMCID:PMC2577007
|
| [70] |
CaiC,ChenS.Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1.Cancer Cell2011;20:457-71 PMCID:PMC3225024
|
| [71] |
LiangY,GuoH.LSD1-mediated epigenetic reprogramming drives CENPE expression and prostate cancer progression.Cancer Res2017;77:5479-90
|
| [72] |
HinoS,NakaoM.Histone demethylase LSD1 controls the phenotypic plasticity of cancer cells.Cancer Sci2016;107:1187-92 PMCID:PMC5021031
|
| [73] |
ColemanDJ,SehrawatA.Alternative splicing of LSD1+8a in neuroendocrine prostate cancer is mediated by SRRM4.Neoplasia2020;22:253-62 PMCID:PMC7218227
|
| [74] |
AlumkalJJ,LuE.Transcriptional profiling identifies an androgen receptor activity-low, stemness program associated with enzalutamide resistance.Proc Natl Acad Sci U S A2020;117:12315-23 PMCID:PMC7275746
|
| [75] |
ZhangD,ZhongY.Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer.Nat Commun2016;7:10798 PMCID:PMC4773505
|
| [76] |
BeltranH,DanilaDC.A phase II trial of the Aurora Kinase A inhibitor alisertib for patients with castration-resistant and neuroendocrine prostate cancer: efficacy and biomarkers.Clin Cancer Res2019;25:43-51 PMCID:PMC6320304
|
| [77] |
LiuB,YangG.PARP inhibition suppresses GR-MYCN-CDK5-RB1-E2F1 signaling and neuroendocrine differentiation in castration-resistant prostate cancer.Clin Cancer Res2019;25:6839-51 PMCID:PMC6858969
|
| [78] |
AggarwalRR,NanusDM.A phase Ib/IIa study of the pan-BET inhibitor ZEN-3694 in combination with enzalutamide in patients with metastatic castration-resistant prostate cancer.Clin Cancer Res2020;26:5338-47 PMCID:PMC7572827
|
| [79] |
KnutsonSK,WarholicNM.A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells.Nat Chem Biol2012;8:890-6
|
| [80] |
McCabeMT,GanjiG.EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations.Nature2012;492:108-12
|