Genomic characterization of treatment-associated small cell neuroendocrine carcinoma of the prostate

Ivan de Kouchkovsky , David A. Quigley , Eric J. Small , Rahul Aggarwal

Journal of Translational Genetics and Genomics ›› 2021, Vol. 5 ›› Issue (3) : 265 -77.

PDF
Journal of Translational Genetics and Genomics ›› 2021, Vol. 5 ›› Issue (3) :265 -77. DOI: 10.20517/jtgg.2021.32
Review

Genomic characterization of treatment-associated small cell neuroendocrine carcinoma of the prostate

Author information +
History +
PDF

Abstract

Treatment-associated small cell neuroendocrine carcinoma of the prostate (t-SCNC) is an aggressive prostate cancer variant with rising incidence. Although morphologically similar to de novo small cell prostate cancer, t-SCNC is thought to emerge from metastatic castration-resistant prostate cancer (mCRPC) under the selective pressure of prolonged AR-targeted therapies. t-SCNC is associated with a distinct transcriptional landscape, characterized by the upregulation of stem cell-associated and neuronal programs (e.g., SOX2, N-MYC, FOXA2) and decreased canonical AR signaling. In addition, as with other neuroendocrine carcinomas, RB1 loss and inactivating TP53 mutations are key genomic hallmarks of t-SCNC. Nevertheless, despite their histologic, molecular, and clinical differences, there is a striking degree of genomic overlap between t-SCNC and its adenocarcinoma counterpart. This finding underscores the clonal evolution of t-SCNC from mCRPC, as well as the importance of epigenetic mechanisms in regulating tumor phenotype. In this review, we summarize the key genomic, transcriptional, and epigenetic features of t-SCNC and discuss how recent advances in our understanding of molecular drivers of t-SCNC have contributed to improving the diagnosis and treatment of this aggressive disease.

Keywords

Castration-resistant prostate cancer / epigenetics / lineage plasticity / molecular genetics / neuroendocrine prostate cancer / small cell carcinoma / prostate

Cite this article

Download citation ▾
Ivan de Kouchkovsky, David A. Quigley, Eric J. Small, Rahul Aggarwal. Genomic characterization of treatment-associated small cell neuroendocrine carcinoma of the prostate. Journal of Translational Genetics and Genomics, 2021, 5(3): 265-77 DOI:10.20517/jtgg.2021.32

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Welch HG.Reconsidering prostate cancer mortality - the future of PSA screening.N Engl J Med2020;382:1557-63

[2]

Siegel RL,Jemal A.Cancer statistics, 2019.CA Cancer J Clin2018;69:7-34

[3]

Beltran H,Mosquera JM.Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer.Nat Med2016;22:298-305 PMCID:PMC4777652

[4]

Aparicio AM,Corn PG.Platinum-based chemotherapy for variant castrate-resistant prostate cancer.Clin Cancer Res2013;19:3621-30 PMCID:PMC3699964

[5]

Conteduca V,Eng KW.Clinical features of neuroendocrine prostate cancer.Eur J Cancer2019;121:7-18 PMCID:PMC6803064

[6]

Spiess PE,Vakar-Lopez F.Treatment outcomes of small cell carcinoma of the prostate: a single-center study.Cancer2007;110:1729-37

[7]

Tětu B,Ayala AG,Logothetis CJ.Small cell carcinoma of the prostate part I a clinicopathologic study of 20 cases.Cancer1987;59:1803-9

[8]

Epstein JI,Beltran H.Proposed morphologic classification of prostate cancer with neuroendocrine differentiation.Am J Surg Pathol2014;38:756-67 PMCID:PMC4112087

[9]

Dong B,Wang Y.Single-cell analysis supports a luminal-neuroendocrine transdifferentiation in human prostate cancer.Commun Biol2020;3:778 PMCID:PMC7745034

[10]

Turbat-Herrera EA,Gore I,Grizzle WE.Neuroendocrine differentiation in prostatic carcinomas. A retrospective autopsy study.Arch Pathol Lab Med1988;112:1100-5

[11]

Aggarwal R,Alumkal JJ.Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate cancer: a multi-institutional prospective study.J Clin Oncol2018;36:2492-503 PMCID:PMC6366813

[12]

Aparicio AM,Tapia EL.Combined tumor suppressor defects characterize clinically defined aggressive variant prostate cancers.Clin Cancer Res2016;22:1520-30 PMCID:PMC4794379

[13]

George J,Jang SJ.Comprehensive genomic profiles of small cell lung cancer.Nature2015;524:47-53 PMCID:PMC4861069

[14]

Aggarwal RR,Huang J.Whole-genome and transcriptional analysis of treatment-emergent small-cell neuroendocrine prostate cancer demonstrates intraclass heterogeneity.Mol Cancer Res2019;17:1235-40 PMCID:PMC6548614

[15]

Quigley DA,Zhao SG.Genomic hallmarks and structural variation in metastatic prostate cancer.Cell2018;174:758-69.e9 PMCID:PMC6425931

[16]

Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer.Cell2015;163:1011-25

[17]

Robinson D,Wu YM.Integrative clinical genomics of advanced prostate cancer.Cell2015;161:1215-28 PMCID:PMC4484602

[18]

Schlereth K,Krampitz AM.Characterization of the p53 cistrome--DNA binding cooperativity dissects p53's tumor suppressor functions.PLoS Genet2013;9:e1003726 PMCID:PMC3744428

[19]

Macleod KF.The RB tumor suppressor: a gatekeeper to hormone independence in prostate cancer?.J Clin Invest2010;120:4179-82 PMCID:PMC2993607

[20]

Nava Rodrigues D,Romanel A.RB1 heterogeneity in advanced metastatic castration-resistant prostate cancer.Clin Cancer Res2019;25:687-97

[21]

Nyquist MD,Coleman I.Combined TP53 and RB1 loss promotes prostate cancer resistance to a spectrum of therapeutics and confers vulnerability to replication stress.Cell Rep2020;31:107669 PMCID:PMC7453577

[22]

Sowalsky AG,Bhasin M.Neoadjuvant-intensive androgen deprivation therapy selects for prostate tumor foci with diverse subclonal oncogenic alterations.Cancer Res2018;78:4716-30 PMCID:PMC6095796

[23]

Mu P,Benelli M.SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer.Science2017;355:84-8 PMCID:PMC5247742

[24]

Ku SY,Wang Y.Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance.Science2017;355:78-83 PMCID:PMC5367887

[25]

Kareta MS,Hafeez S.Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis.Cell Stem Cell2015;16:39-50 PMCID:PMC4389904

[26]

Soundararajan R,Logothetis CJ,Maity SN.Function of tumor suppressors in resistance to antiandrogen therapy and luminal epithelial plasticity of aggressive variant neuroendocrine prostate cancers.Front Oncol2018;8:69 PMCID:PMC5862804

[27]

Park JW,Sheu KM.Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage.Science2018;362:91-5 PMCID:PMC6414229

[28]

Zou M,Mitrofanova A.Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration-resistant prostate cancer.Cancer Discov2017;7:736-49 PMCID:PMC5501744

[29]

Beltran H,Conteduca V.Circulating tumor DNA profile recognizes transformation to castration-resistant neuroendocrine prostate cancer.J Clin Invest2020;130:1653-68 PMCID:PMC7108892

[30]

Adams EJ,Hoover E.FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes.Nature2019;571:408-12 PMCID:PMC6661172

[31]

Smith BA,Uzunangelov V.A basal stem cell signature identifies aggressive prostate cancer phenotypes.Proc Natl Acad Sci U S A2015;112:E6544-52 PMCID:PMC4664352

[32]

Labrecque MP,Brown LG.Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer.J Clin Invest2019;129:4492-505 PMCID:PMC6763249

[33]

Schaefer T.SOX2 protein biochemistry in stemness, reprogramming, and cancer: the PI3K/AKT/SOX2 axis and beyond.Oncogene2020;39:278-92 PMCID:PMC6949191

[34]

Takahashi K.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Cell2006;126:663-76

[35]

Kregel S,Rosen AM.Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer.PLoS One2013;8:e53701 PMCID:PMC3543364

[36]

Akamatsu S,Lin D.The placental gene PEG10 Promotes progression of neuroendocrine prostate cancer.Cell Rep2015;12:922-36

[37]

Kim S,Bidnur S.PEG10 is associated with treatment-induced neuroendocrine prostate cancer.J Mol Endocrinol2019;63:39-49

[38]

Verma S,Kalayci FNC.Androgen deprivation induces transcriptional reprogramming in prostate cancer cells to develop stem cell-like characteristics.Int J Mol Sci2020;21:9568 PMCID:PMC7765584

[39]

Kwon OJ,Jia D.Sox2 is necessary for androgen ablation-induced neuroendocrine differentiation from Pten null Sca-1+ prostate luminal cells.Oncogene2021;40:203-14 PMCID:PMC7796948

[40]

Li H,Li Z.SOX2 has dual functions as a regulator in the progression of neuroendocrine prostate cancer.Lab Invest2020;100:570-82

[41]

Berger A,Bareja R.N-Myc-mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer.J Clin Invest2019;129:3924-40 PMCID:PMC6715370

[42]

Dardenne E,Benelli M.N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer.Cancer Cell2016;30:563-77 PMCID:PMC5540451

[43]

Yin Y,Chang Y.N-Myc promotes therapeutic resistance development of neuroendocrine prostate cancer by differentially regulating miR-421/ATM pathway.Mol Cancer2019;18:11 PMCID:PMC6337850

[44]

Zhang W,Wu W.Targeting the MYCN-PARP-DNA damage response pathway in neuroendocrine prostate cancer.Clin Cancer Res2018;24:696-707 PMCID:PMC5823274

[45]

Parolia A,Chu SC.Distinct structural classes of activating FOXA1 alterations in advanced prostate cancer.Nature2019;571:413-8 PMCID:PMC6661908

[46]

Kim J,Zhao JC.FOXA1 inhibits prostate cancer neuroendocrine differentiation.Oncogene2017;36:4072-80 PMCID:PMC5509480

[47]

Baca SC,Seo JH.Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer.Nat Commun2021;12:1979 PMCID:PMC8010057

[48]

Mirosevich J,Matusik RJ.Expression of Foxa transcription factors in the developing and adult murine prostate.Prostate2005;62:339-52

[49]

Lee JK,Smith BA.N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells.Cancer Cell2016;29:536-47 PMCID:PMC4829466

[50]

Chiaverotti T,Donjacour A.Dissociation of epithelial and neuroendocrine carcinoma lineages in the transgenic adenocarcinoma of mouse prostate model of prostate cancer.Am J Pathol2008;172:236-46 PMCID:PMC2189611

[51]

Park JW,Witte ON.FOXA2 is a sensitive and specific marker for small cell neuroendocrine carcinoma of the prostate.Mod Pathol2017;30:1262-72 PMCID:PMC6330177

[52]

Liu Q,Wang LA.Histone demethylase PHF8 drives neuroendocrine prostate cancer progression by epigenetically upregulating FOXA2.J Pathol2021;253:106-18 PMCID:PMC7756255

[53]

Qi J,Cardiff RD.Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors.Cancer Cell2010;18:23-38 PMCID:PMC2919332

[54]

Rotinen M,Yang J.ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis.Nat Med2018;24:1887-98 PMCID:PMC6614557

[55]

Guo H,Ahmed M.ONECUT2 is a driver of neuroendocrine prostate cancer.Nat Commun2019;10:278 PMCID:PMC6336817

[56]

Kleb B,Zhang J.Differentially methylated genes and androgen receptor re-expression in small cell prostate carcinomas.Epigenetics2016;11:184-93 PMCID:PMC4854553

[57]

Zhao SG,Li H.The DNA methylation landscape of advanced prostate cancer.Nat Genet2020;52:778-89 PMCID:PMC7454228

[58]

Choi SYC,Lin D.Targeting MCT4 to reduce lactic acid secretion and glycolysis for treatment of neuroendocrine prostate cancer.Cancer Med2018;7:3385-92 PMCID:PMC6051138

[59]

Li W,Sun Y.The role of CD44 in glucose metabolism in prostatic small cell neuroendocrine carcinoma.Mol Cancer Res2016;14:344-53 PMCID:PMC4834240

[60]

Reina-Campos M,Duran A.Increased serine and one-carbon pathway metabolism by PKCλ/ι deficiency promotes neuroendocrine prostate cancer.Cancer Cell2019;35:385-400.e9 PMCID:PMC6424636

[61]

Clermont PL,Crea F.Polycomb-mediated silencing in neuroendocrine prostate cancer.Clin Epigenetics2015;7:40 PMCID:PMC4391120

[62]

Puca L,Prandi D.Patient derived organoids to model rare prostate cancer phenotypes.Nat Commun2018;9:2404 PMCID:PMC6008438

[63]

Shan J,Al-Kowari MK.Targeting Wnt/EZH2/microRNA-708 signaling pathway inhibits neuroendocrine differentiation in prostate cancer.Cell Death Discov2019;5:139 PMCID:PMC6768854

[64]

Zhang Y,Zhou T.Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREB-EZH2-TSP1 pathway in prostate cancers.Nat Commun2018;9:4080 PMCID:PMC6172226

[65]

Li Y,Sahinalp C.SRRM4 drives neuroendocrine transdifferentiation of prostate adenocarcinoma under androgen receptor pathway inhibition.Eur Urol2017;71:68-78

[66]

Cavadas MA,Crifo B.REST is a hypoxia-responsive transcriptional repressor.Sci Rep2016;6:31355 PMCID:PMC4987654

[67]

Lapuk AV,Wyatt AW.From sequence to molecular pathology, and a mechanism driving the neuroendocrine phenotype in prostate cancer.J Pathol2012;227:286-97 PMCID:PMC3659819

[68]

Chang YT,Campbell M.REST is a crucial regulator for acquiring EMT-like and stemness phenotypes in hormone-refractory prostate cancer.Sci Rep2017;7:42795 PMCID:PMC5335619

[69]

Jia L,Jariwala U.Genomic androgen receptor-occupied regions with different functions, defined by histone acetylation, coregulators and transcriptional capacity.PLoS One2008;3:e3645 PMCID:PMC2577007

[70]

Cai C,Chen S.Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1.Cancer Cell2011;20:457-71 PMCID:PMC3225024

[71]

Liang Y,Guo H.LSD1-mediated epigenetic reprogramming drives CENPE expression and prostate cancer progression.Cancer Res2017;77:5479-90

[72]

Hino S,Nakao M.Histone demethylase LSD1 controls the phenotypic plasticity of cancer cells.Cancer Sci2016;107:1187-92 PMCID:PMC5021031

[73]

Coleman DJ,Sehrawat A.Alternative splicing of LSD1+8a in neuroendocrine prostate cancer is mediated by SRRM4.Neoplasia2020;22:253-62 PMCID:PMC7218227

[74]

Alumkal JJ,Lu E.Transcriptional profiling identifies an androgen receptor activity-low, stemness program associated with enzalutamide resistance.Proc Natl Acad Sci U S A2020;117:12315-23 PMCID:PMC7275746

[75]

Zhang D,Zhong Y.Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer.Nat Commun2016;7:10798 PMCID:PMC4773505

[76]

Beltran H,Danila DC.A phase II trial of the Aurora Kinase A inhibitor alisertib for patients with castration-resistant and neuroendocrine prostate cancer: efficacy and biomarkers.Clin Cancer Res2019;25:43-51 PMCID:PMC6320304

[77]

Liu B,Yang G.PARP inhibition suppresses GR-MYCN-CDK5-RB1-E2F1 signaling and neuroendocrine differentiation in castration-resistant prostate cancer.Clin Cancer Res2019;25:6839-51 PMCID:PMC6858969

[78]

Aggarwal RR,Nanus DM.A phase Ib/IIa study of the pan-BET inhibitor ZEN-3694 in combination with enzalutamide in patients with metastatic castration-resistant prostate cancer.Clin Cancer Res2020;26:5338-47 PMCID:PMC7572827

[79]

Knutson SK,Warholic NM.A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells.Nat Chem Biol2012;8:890-6

[80]

McCabe MT,Ganji G.EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations.Nature2012;492:108-12

PDF

62

Accesses

0

Citation

Detail

Sections
Recommended

/