Epigenetics in prostate cancer treatment

Katelyn Jones , Yanquan Zhang , Yifan Kong , Elia Farah , Ruixin Wang , Chaohao Li , Xinyi Wang , ZhuangZhuang Zhang , Jianlin Wang , Fengyi Mao , Xiaoqi Liu , Jinghui Liu

Journal of Translational Genetics and Genomics ›› 2021, Vol. 5 ›› Issue (3) : 341 -56.

PDF
Journal of Translational Genetics and Genomics ›› 2021, Vol. 5 ›› Issue (3) :341 -56. DOI: 10.20517/jtgg.2021.19
Review

Epigenetics in prostate cancer treatment

Author information +
History +
PDF

Abstract

Prostate cancer (PCa) is the most commonly diagnosed malignancy among men, and the progression of this disease results in fewer treatment options available to clinical patients. It highlights the vital necessity for discovering novel therapeutic approaches and expanding the current understanding of molecular mechanisms. Epigenetic alternations such as DNA methylation models and histone modifications have been associated as key drivers in the development and advancement of PCa. Several studies have been conducted and demonstrated that targeting these epigenetic enzymes or regulatory proteins has been strongly associated with the regulation of cancer cell growth. Due to the success rate of these therapeutic routes in pre-clinical settings, many drugs have now advanced to clinical testing, where efficacy will be measured. This review will discuss the role of epigenetic modifications in PCa development and its function in the progression of the disease to resistant forms and introduce therapeutic strategies that have demonstrated successful results as PCa treatment.

Keywords

Epigenetics / prostate cancer / prostate cancer treatment

Cite this article

Download citation ▾
Katelyn Jones, Yanquan Zhang, Yifan Kong, Elia Farah, Ruixin Wang, Chaohao Li, Xinyi Wang, ZhuangZhuang Zhang, Jianlin Wang, Fengyi Mao, Xiaoqi Liu, Jinghui Liu. Epigenetics in prostate cancer treatment. Journal of Translational Genetics and Genomics, 2021, 5(3): 341-56 DOI:10.20517/jtgg.2021.19

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Siegel RL,Jemal A.Cancer statistics, 2020.CA Cancer J Clin2020;70:7-30

[2]

Juárez Soto A,Campanario Pérez R.[Abiraterone in castration resistant prostate cancer].Arch Esp Urol2018;71:651-63

[3]

Kong Y,Mao F.Inhibition of EZH2 Enhances the antitumor efficacy of metformin in prostate cancer.Mol Cancer Ther2020;19:2490-501 PMCID:PMC7718407

[4]

Zhang Z,Li J.Inhibition of the Wnt/β-Catenin pathway overcomes resistance to enzalutamide in castration-resistant prostate cancer.Cancer Res2018;78:3147-62 PMCID:PMC6004251

[5]

Chen X,Cheng L.Inhibition of noncanonical Wnt pathway overcomes enzalutamide resistance in castration-resistant prostate cancer.Prostate2020;80:256-66

[6]

Kong Y,Mao F.Inhibition of cholesterol biosynthesis overcomes enzalutamide resistance in castration-resistant prostate cancer (CRPC).J Biol Chem2018;293:14328-41 PMCID:PMC6139550

[7]

Antonarakis ES,Wang H.AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer.N Engl J Med2014;371:1028-38 PMCID:PMC4201502

[8]

Wang R,Li L.Preclinical study using malat1 small interfering RNA or androgen receptor splicing variant 7 degradation enhancer ASC-J9® to suppress enzalutamide-resistant prostate cancer progression.Eur Urol2017;72:835-44 PMCID:PMC5802348

[9]

Yamamoto Y,Beraldi E.Generation 2.5 antisense oligonucleotides targeting the androgen receptor and its splice variants suppress enzalutamide-resistant prostate cancer cell growth.Clin Cancer Res2015;21:1675-87

[10]

Farah E,Cheng L.NOTCH signaling is activated in and contributes to resistance in enzalutamide-resistant prostate cancer cells.J Biol Chem2019;294:8543-54 PMCID:PMC6544854

[11]

Biswas S.Epigenetic tools (the writers, the readers and the erasers) and their implications in cancer therapy.Eur J Pharmacol2018;837:8-24

[12]

Portela A.Epigenetic modifications and human disease.Nat Biotechnol2010;28:1057-68

[13]

Hake SB,Allis CD.Linking the epigenetic “language” of covalent histone modifications to cancer.Br J Cancer2004;90:761-9 PMCID:PMC2410168

[14]

Tuorto F,Alerasool N.The tRNA methyltransferase Dnmt2 is required for accurate polypeptide synthesis during haematopoiesis.EMBO J2015;34:2350-62 PMCID:PMC4570521

[15]

Jurkowska RZ,Urbanke C.Formation of nucleoprotein filaments by mammalian DNA methyltransferase Dnmt3a in complex with regulator Dnmt3L.Nucleic Acids Res2008;36:6656-63 PMCID:PMC2588524

[16]

Ashour N,Andrés G.A DNA hypermethylation profile reveals new potential biomarkers for prostate cancer diagnosis and prognosis.Prostate2014;74:1171-82

[17]

Angulo JC,Ashour N,López JI.Development of castration resistant prostate cancer can be predicted by a DNA hypermethylation profile.J Urol2016;195:619-26

[18]

Moritz R,Nuhn P.DNA hypermethylation as a predictor of PSA recurrence in patients with low- and intermediate-grade prostate cancer.Anticancer Res2013;33:5249-54

[19]

Barry KH,Erickson PA.MYC DNA methylation in prostate tumor tissue is associated with gleason score.Genes (Basel)2020;12:12 PMCID:PMC7823928

[20]

Rauluseviciute I,Rye MB.DNA hypermethylation associated with upregulated gene expression in prostate cancer demonstrates the diversity of epigenetic regulation.BMC Med Genomics2020;13:6 PMCID:PMC6950795

[21]

Mohammadi M,Salahshourifar I,Moradi A.The effect of hormone therapy on the expression of prostate cancer and multi-epigenetic marker genes in a population of iranian patients.Cancer Manag Res2020;12:3691-7 PMCID:PMC7245437

[22]

Gravina GL,Piccolella M.Hormonal therapy promotes hormone-resistant phenotype by increasing DNMT activity and expression in prostate cancer models.Endocrinology2011;152:4550-61 PMCID:PMC3230051

[23]

Chen X,Davison J.G9a/GLP-dependent histone H3K9me2 patterning during human hematopoietic stem cell lineage commitment.Genes Dev2012;26:2499-511 PMCID:PMC3505820

[24]

Poulard C,Wu DY,Gerke DS.A post-translational modification switch controls coactivator function of histone methyltransferases G9a and GLP.EMBO Rep2017;18:1442-59 PMCID:PMC5538762

[25]

Lee DY,Kuo MH.Histone H3 lysine 9 methyltransferase G9a is a transcriptional coactivator for nuclear receptors.J Biol Chem2006;281:8476-85 PMCID:PMC1770944

[26]

Chin HG,Pradhan M.Automethylation of G9a and its implication in wider substrate specificity and HP1 binding.Nucleic Acids Res2007;35:7313-23 PMCID:PMC2175347

[27]

Rathert P,Murakami M.Protein lysine methyltransferase G9a acts on non-histone targets.Nat Chem Biol2008;4:344-6 PMCID:PMC2696268

[28]

Chen MW,Kao HJ.H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule Ep-CAM.Cancer Res2010;70:7830-40

[29]

Hua KT,Chen MW.The H3K9 methyltransferase G9a is a marker of aggressive ovarian cancer that promotes peritoneal metastasis.Mol Cancer2014;13:189 PMCID:PMC4260797

[30]

Lee JS,Kim IS.Negative regulation of hypoxic responses via induced Reptin methylation.Mol Cell2010;39:71-85 PMCID:PMC4651011

[31]

Lee JS,Bhin J.Hypoxia-induced methylation of a pontin chromatin remodeling factor.Proc Natl Acad Sci U S A2011;108:13510-5 PMCID:PMC3158161

[32]

Lee SH,Kim WH.Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells.Oncogene2009;28:184-94

[33]

Casciello F,Miranda M.G9a-mediated repression of CDH10 in hypoxia enhances breast tumour cell motility and associates with poor survival outcome.Theranostics2020;10:4515-29 PMCID:PMC7150496

[34]

Kang J,Yoon H.FIH is an oxygen sensor in ovarian cancer for G9a/GLP-driven epigenetic regulation of metastasis-related genes.Cancer Res2018;78:1184-99

[35]

Ding J,Wang X.The histone H3 methyltransferase G9A epigenetically activates the serine-glycine synthesis pathway to sustain cancer cell survival and proliferation.Cell Metab2013;18:896-907 PMCID:PMC3878056

[36]

Dong C,Wu Y.Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer.Cancer Cell2013;23:316-31 PMCID:PMC3703516

[37]

Wang YF,Su Y.G9a regulates breast cancer growth by modulating iron homeostasis through the repression of ferroxidase hephaestin.Nat Commun2017;8:274 PMCID:PMC5561105

[38]

Dutta A,Mitrofanova A,Califano A.Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation.Science2016;352:1576-80 PMCID:PMC5507586

[39]

Segovia C,Munera-Maravilla E.Inhibition of a G9a/DNMT network triggers immune-mediated bladder cancer regression.Nat Med2019;25:1073-81

[40]

Guler GD,Pitti R.Repression of stress-induced LINE-1 expression protects cancer cell subpopulations from lethal drug exposure.Cancer Cell2017;32:221-237.e13

[41]

Cao R,Wang H.Role of histone H3 lysine 27 methylation in polycomb-group silencing.Science2002;298:1039-43

[42]

Yu J,Mani RS.An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression.Cancer Cell2010;17:443-54 PMCID:PMC2874722

[43]

Kim E,Woo DH.Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells.Cancer Cell2013;23:839-52 PMCID:PMC4109796

[44]

Sanulli S,Teissandier A.Jarid2 methylation via the PRC2 complex regulates H3K27me3 deposition during cell differentiation.Mol Cell2015;57:769-83 PMCID:PMC4352895

[45]

He A,Ma Q.PRC2 directly methylates GATA4 and represses its transcriptional activity.Genes Dev2012;26:37-42 PMCID:PMC3258964

[46]

Shi B,Yang X.Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells.Mol Cell Biol2007;27:5105-19 PMCID:PMC1951944

[47]

Lee ST,Wu Z.Context-specific regulation of NF-κB target gene expression by EZH2 in breast cancers.Mol Cell2011;43:798-810

[48]

Gonzalez ME,Li X.EZH2 expands breast stem cells through activation of NOTCH1 signaling.Proc Natl Acad Sci U S A2014;111:3098-103 PMCID:PMC3939892

[49]

Xu K,Groner AC.EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent.Science2012;338:1465-9 PMCID:PMC3625962

[50]

Kim J,Lu X.Polycomb- and methylation-independent roles of EZH2 as a transcription activator.Cell Rep2018;25:2808-20.e4 PMCID:PMC6342284

[51]

Rodriguez-Vida A,Rudman S,Sternberg CN.Enzalutamide for the treatment of metastatic castration-resistant prostate cancer.Drug Des Devel Ther2015;9:3325-39 PMCID:PMC4492664

[52]

Bai Y,Cheng L.Inhibition of enhancer of zeste homolog 2 (EZH2) overcomes enzalutamide resistance in castration-resistant prostate cancer.J Biol Chem2019;294:9911-23 PMCID:PMC6597805

[53]

Welti J,Brooks N.SU2C/PCF International Prostate Cancer Dream TeamTargeting the p300/CBP axis in lethal prostate cancer.Cancer Discov2021;11:1118-37 PMCID:PMC8102310

[54]

Xia C,Li M,Qu J.Protein acetylation and deacetylation: an important regulatory modification in gene transcription (review).Exp Ther Med2020;20:2923-40 PMCID:PMC7444376

[55]

Zhong J,Bohrer LR.p300 acetyltransferase regulates androgen receptor degradation and PTEN-deficient prostate tumorigenesis.Cancer Res2014;74:1870-80 PMCID:PMC3971883

[56]

Fu M,Reutens AT.p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation.J Biol Chem2000;275:20853-60

[57]

Lasko LM,Edalji RP.Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours.Nature2017;550:128-32 PMCID:PMC6050590

[58]

Jin L,Chan E.Therapeutic Targeting of the CBP/p300 bromodomain blocks the growth of castration-resistant prostate cancer.Cancer Res2017;77:5564-75

[59]

Liu J,Cheng L.p300/CBP inhibition enhances the efficacy of programmed death-ligand 1 blockade treatment in prostate cancer.Oncogene2020;39:3939-51 PMCID:PMC7210073

[60]

Ghosh AK,Ray RB.Knockdown of MBP-1 in human prostate cancer cells delays cell cycle progression.J Biol Chem2006;281:23652-7

[61]

Haynes SR,Winston F,Trowsdale J.The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins.Nucleic Acids Res1992;20:2603 PMCID:PMC312404

[62]

Filippakopoulos P.The bromodomain interaction module.FEBS Lett2012;586:2692-704

[63]

Dhalluin C,Zeng L,Aggarwal AK.Structure and ligand of a histone acetyltransferase bromodomain.Nature1999;399:491-6

[64]

Jiang YW,Erdjument-Bromage H.Mammalian mediator of transcriptional regulation and its possible role as an end-point of signal transduction pathways.Proc Natl Acad Sci U S A1998;95:8538-43 PMCID:PMC21111

[65]

Jang MK,Zhou M,Brady JN.The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription.Mol Cell2005;19:523-34

[66]

Yang Z,Chen R.Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4.Mol Cell2005;19:535-45

[67]

Shi J,Zeng L.Disrupting the interaction of BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like breast cancer.Cancer Cell2014;25:210-25 PMCID:PMC4004960

[68]

Shi J,Zhou BP.Twist-BRD4 complex: potential drug target for basal-like breast cancer.Curr Pharm Des2015;21:1256-61 PMCID:PMC5644350

[69]

Devaiah BN,Cherman N.BRD4 is an atypical kinase that phosphorylates serine2 of the RNA polymerase II carboxy-terminal domain.Proc Natl Acad Sci U S A2012;109:6927-32 PMCID:PMC3345009

[70]

Devaiah BN,Akman B.MYC protein stability is negatively regulated by BRD4.Proc Natl Acad Sci U S A2020;117:13457-67 PMCID:PMC7306749

[71]

Pawar A,Wang S.Resistance to BET inhibitor leads to alternative therapeutic vulnerabilities in castration-resistant prostate cancer.Cell Rep2018;22:2236-45

[72]

Nagarajan S,Alawi M.Bromodomain protein BRD4 is required for estrogen receptor-dependent enhancer activation and gene transcription.Cell Rep2014;8:460-9 PMCID:PMC4747248

[73]

Faivre EJ,Albert DH.Selective inhibition of the BD2 bromodomain of BET proteins in prostate cancer.Nature2020;578:306-10

[74]

Filippakopoulos P,Picaud S.Selective inhibition of BET bromodomains.Nature2010;468:1067-73 PMCID:PMC3010259

[75]

Shu S.BET bromodomain proteins as cancer therapeutic targets.Cold Spring Harb Symp Quant Biol2016;81:123-9

[76]

Gilan O,Knezevic K.Selective targeting of BD1 and BD2 of the BET proteins in cancer and immunoinflammation.Science2020;368:387-94 PMCID:PMC7610820

[77]

Dai X,Li X.Prostate cancer-associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4.Nat Med2017;23:1063-71 PMCID:PMC5625299

[78]

Zhou B,Xu F.Discovery of a small-molecule degrader of bromodomain and extra-terminal (BET) proteins with picomolar cellular potencies and capable of achieving tumor regression.J Med Chem2018;61:462-81 PMCID:PMC5788414

[79]

Raina K,Qian Y.PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer.Proc Natl Acad Sci U S A2016;113:7124-9 PMCID:PMC4932933

[80]

Mao F,Luo Q.Plk1 inhibition enhances the efficacy of BET epigenetic reader blockade in castration-resistant prostate cancer.Mol Cancer Ther2018;17:1554-65 PMCID:PMC6030429

[81]

Seto E.Erasers of histone acetylation: the histone deacetylase enzymes.Cold Spring Harb Perspect Biol2014;6:a018713 PMCID:PMC3970420

[82]

Rana Z,Hanif M.Understanding failure and improving treatment using HDAC inhibitors for prostate cancer.Biomedicines2020;8:22 PMCID:PMC7168248

[83]

Kaushik D,Isharwal S,Lin MF.Histone deacetylase inhibitors in castration-resistant prostate cancer: molecular mechanism of action and recent clinical trials.Ther Adv Urol2015;7:388-95 PMCID:PMC4647138

[84]

Weichert W,Gekeler V.Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy.Br J Cancer2008;98:604-10 PMCID:PMC2243142

[85]

Graça I,Henrique R,Crabb SJ.Epigenetic modulators as therapeutic targets in prostate cancer.Clin Epigenetics2016;8:98 PMCID:PMC5025578

[86]

Gao L.Epigenetic regulation of androgen receptor signaling in prostate cancer.Epigenetics2010;5:100-4 PMCID:PMC3150559

[87]

Welsbie DS,Chen Y.Histone deacetylases are required for androgen receptor function in hormone-sensitive and castrate-resistant prostate cancer.Cancer Res2009;69:958-66 PMCID:PMC3219545

[88]

Sato S,Shinjo K.Histone deacetylase inhibition in prostate cancer triggers miR-320-mediated suppression of the androgen receptor.Cancer Res2016;76:4192-204

[89]

Robey RW,Basseville A.Histone deacetylase inhibitors: emerging mechanisms of resistance.Mol Pharm2011;8:2021-31 PMCID:PMC3230675

[90]

Shi Y,Matson C.Histone demethylation mediated by the nuclear amine oxidase homolog LSD1.Cell2004;119:941-53

[91]

Crea F,Mai A.The emerging role of histone lysine demethylases in prostate cancer.Mol Cancer2012;11:52 PMCID:PMC3441810

[92]

Gao S,Han D.Chromatin binding of FOXA1 is promoted by LSD1-mediated demethylation in prostate cancer.Nat Genet2020;52:1011-7 PMCID:PMC7541538

[93]

Regufe da Mota S,Strivens RA.LSD1 inhibition attenuates androgen receptor V7 splice variant activation in castration resistant prostate cancer models.Cancer Cell Int2018;18:71 PMCID:PMC5941811

[94]

Metzger E,Yin N.LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription.Nature2005;437:436-9

[95]

Wissmann M,Müller JM.Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression.Nat Cell Biol2007;9:347-53

[96]

Sehrawat A,Wang Y.LSD1 activates a lethal prostate cancer gene network independently of its demethylase function.Proc Natl Acad Sci U S A2018;115:E4179-88 PMCID:PMC5939079

[97]

Fang Y,Yu B.LSD1/KDM1A inhibitors in clinical trials: advances and prospects.J Hematol Oncol2019;12:129 PMCID:PMC6894138

[98]

Wilson S,Sahgal N,Filipp FV.The histone demethylase KDM3A regulates the transcriptional program of the androgen receptor in prostate cancer cells.Oncotarget2017;8:30328-43 PMCID:PMC5444746

[99]

Kim TD,Shin S.Histone demethylase JMJD2A drives prostate tumorigenesis through transcription factor ETV1.J Clin Invest2016;126:706-20 PMCID:PMC4731184

[100]

Chu CH,Hsu KC.KDM4B as a target for prostate cancer: structural analysis and selective inhibition by a novel inhibitor.J Med Chem2014;57:5975-85 PMCID:PMC4216216

[101]

Duan L,Roggero C.KDM4/JMJD2 histone demethylase inhibitors block prostate tumor growth by suppressing the expression of AR and BMYB-regulated genes.Chem Biol2015;22:1185-96 PMCID:PMC4578295

[102]

Stief SM,Weser S.Loss of KDM6A confers drug resistance in acute myeloid leukemia.Leukemia2020;34:50-62 PMCID:PMC7214274

[103]

Gao Y,Lou Z.Asf1a resolves bivalent chromatin domains for the induction of lineage-specific genes during mouse embryonic stem cell differentiation.Proc Natl Acad Sci U S A2018;115:E6162-71 PMCID:PMC6142193

[104]

Abascal F,Gurard-Levin ZA.Subfunctionalization via adaptive evolution influenced by genomic context: the case of histone chaperones ASF1a and ASF1b.Mol Biol Evol2013;30:1853-66

[105]

Das C,Hansen KC.CBP/p300-mediated acetylation of histone H3 on lysine 56.Nature2009;459:113-7 PMCID:PMC2756583

[106]

Li F,Luster TA.In vivo epigenetic CRISPR screen identifies Asf1a as an immunotherapeutic target in Kras-mutant lung adenocarcinoma.Cancer Discov2020;10:270-87 PMCID:PMC7007372

[107]

Lee KY,Shibata E.ASF1a promotes non-homologous end joining repair by facilitating phosphorylation of MDC1 by ATM at double-strand breaks.Mol Cell2017;68:61-75.e5 PMCID:PMC5743198

[108]

Wang C,Yan H.A conserved RAD6-MDM2 ubiquitin ligase machinery targets histone chaperone ASF1A in tumorigenesis.Oncotarget2015;6:29599-613 PMCID:PMC4745749

[109]

Henrique R.ASF1A in gastric and colorectal cancer: on the hinge between genetics and epigenetics?.EBioMedicine2017;21:45-6 PMCID:PMC5514406

[110]

Liang X,Yu J.Histone chaperone asf1a predicts poor outcomes for patients with gastrointestinal cancer and drives cancer progression by stimulating transcription of β-catenin target genes.EBioMedicine2017;21:104-16 PMCID:PMC5514402

[111]

Wu Y,Yu J,Xu D.ASF1a inhibition induces p53-dependent growth arrest and senescence of cancer cells.Cell Death Dis2019;10:76 PMCID:PMC6349940

[112]

Im JS,Lee KY,Park J.ATR checkpoint kinase and CRL1βTRCP collaborate to degrade ASF1a and thus repress genes overlapping with clusters of stalled replication forks.Genes Dev2014;28:875-87 PMCID:PMC4003279

[113]

Sauer PV,Liu WH.Mechanistic insights into histone deposition and nucleosome assembly by the chromatin assembly factor-1.Nucleic Acids Res2018;46:9907-17 PMCID:PMC6212844

[114]

Buschbeck M.Variants of core histones and their roles in cell fate decisions, development and cancer.Nat Rev Mol Cell Biol2017;18:299-314

[115]

Burgess RJ.Histone chaperones in nucleosome assembly and human disease.Nat Struct Mol Biol2013;20:14-22 PMCID:PMC4004355

[116]

Polo SE,Klijanienko J.Chromatin assembly factor-1, a marker of clinical value to distinguish quiescent from proliferating cells.Cancer Res2004;64:2371-81

[117]

Nabatiyan A.Silencing of chromatin assembly factor 1 in human cells leads to cell death and loss of chromatin assembly during DNA synthesis.Mol Cell Biol2004;24:2853-62 PMCID:PMC371118

[118]

Staibano S,Mancini FP.Overexpression of chromatin assembly factor-1 (CAF-1) p60 is predictive of adverse behaviour of prostatic cancer.Histopathology2009;54:580-9

[119]

Garee JP.SAFB1's multiple functions in biological control-lots still to be done!.J Cell Biochem2010;109:312-9

[120]

Renz A.Purification and molecular cloning of the scaffold attachment factor B (SAF-B), a novel human nuclear protein that specifically binds to S/MAR-DNA.Nucleic Acids Res1996;24:843-9 PMCID:PMC145707

[121]

Altmeyer M,Gudjonsson T.The chromatin scaffold protein SAFB1 renders chromatin permissive for DNA damage signaling.Mol Cell2013;52:206-20

[122]

Debril MB,Feige JN.Scaffold attachment factor B1 directly interacts with nuclear receptors in living cells and represses transcriptional activity.J Mol Endocrinol2005;35:503-17

[123]

Oesterreich S,Hopp T.Tamoxifen-bound estrogen receptor (ER) strongly interacts with the nuclear matrix protein HET/SAF-B, a novel inhibitor of ER-mediated transactivation.Mol Endocrinol2000;14:369-81

[124]

Hammerich-Hille S,Tsimelzon A.SAFB1 mediates repression of immune regulators and apoptotic genes in breast cancer cells.J Biol Chem2010;285:3608-16 PMCID:PMC2823501

[125]

Hammerich-Hille S,Hilsenbeck SG,Oesterreich S.Low SAFB levels are associated with worse outcome in breast cancer patients.Breast Cancer Res Treat2010;121:503-9

[126]

Mukhopadhyay NK,You S.Scaffold attachment factor B1 regulates the androgen receptor in concert with the growth inhibitory kinase MST1 and the methyltransferase EZH2.Oncogene2014;33:3235-45 PMCID:PMC3934948

[127]

Sugiura M,Kanesaka M.Epigenetic modifications in prostate cancer.Int J Urol2021;28:140-9

[128]

Suzuki H,Aida S.Microsatellite instability and other molecular abnormalities in human prostate cancer.Jpn J Cancer Res1995;86:956-61 PMCID:PMC5920592

[129]

Hügel A.Loss of heterozygosity (LOH), malignancy grade and clonality in microdissected prostate cancer.Br J Cancer1999;79:551-7 PMCID:PMC2362403

[130]

Koochekpour S.Genetic and epigenetic changes in human prostate cancer.Iran Red Crescent Med J2011;13:80-98 PMCID:PMC3371912

[131]

Kamdar S,Van der Kwast T.Exploring targets of TET2-mediated methylation reprogramming as potential discriminators of prostate cancer progression.Clin Epigenetics2019;11:54 PMCID:PMC6438015

[132]

Li K,Huang L,Zhu X.Microsatellite instability: a review of what the oncologist should know.Cancer Cell Int2020;20:16 PMCID:PMC6958913

[133]

Veneti Z,Eliopoulos AG.Polycomb repressor complex 2 in genomic instability and cancer.Int J Mol Sci2017;18:1657 PMCID:PMC5578047

[134]

Wang J,Ming SL.BRD4 inhibition exerts anti-viral activity through DNA damage-dependent innate immune responses.PLoS Pathog2020;16:e1008429 PMCID:PMC7122826

PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

/