Genome-wide homozygosity and risk of four non-Hodgkin lymphoma subtypes

Amy Moore , Mitchell J. Machiela , Moara Machado , Sophia S. Wang , Eleanor Kane , Susan L. Slager , Weiyin Zhou , Mary Carrington , Qing Lan , Roger L. Milne , Brenda M. Birmann , Hans-Olov Adami , Demetrius Albanes , Alan A. Arslan , Nikolaus Becker , Yolanda Benavente , Simonetta Bisanzi , Paolo Boffetta , Paige M. Bracci , Paul Brennan , Angela R. Brooks-Wilson , Federico Canzian , Neil Caporaso , Jacqueline Clavel , Pierluigi Cocco , Lucia Conde , David G. Cox , Wendy Cozen , Karen Curtin , Immaculata De Vivo , Silvia de Sanjose , Lenka Foretova , Susan M. Gapstur , Hervé Ghesquières , Graham G. Giles , Martha Glenn , Bengt Glimelius , Chi Gao , Thomas M. Habermann , Henrik Hjalgrim , Rebecca D. Jackson , Mark Liebow , Brian K. Link , Marc Maynadie , James McKay , Mads Melbye , Lucia Miligi , Thierry J. Molina , Alain Monnereau , Alexandra Nieters , Kari E. North , Kenneth Offit , Alpa V. Patel , Sara Piro , Vignesh Ravichandran , Elio Riboli , Gilles Salles , Richard K. Severson , Christine F. Skibola , Karin E. Smedby , Melissa C. Southey , John J. Spinelli , Anthony Staines , Carolyn Stewart , Lauren R. Teras , Lesley F. Tinker , Ruth C. Travis , Claire M. Vajdic , Roel C. H. Vermeulen , Joseph Vijai , Elisabete Weiderpass , Stephanie Weinstein , Nicole Wong Doo , Yawei Zhang , Tongzhang Zheng , Stephen J. Chanock , Nathaniel Rothman , James R. Cerhan , Michael Dean , Nicola J. Camp , Meredith Yeager , Sonja I. Berndt

Journal of Translational Genetics and Genomics ›› 2021, Vol. 5 ›› Issue (2) : 200 -217.

PDF
Journal of Translational Genetics and Genomics ›› 2021, Vol. 5 ›› Issue (2) :200 -217. DOI: 10.20517/jtgg.2021.08
review-article

Genome-wide homozygosity and risk of four non-Hodgkin lymphoma subtypes

Author information +
History +
PDF

Abstract

Aim: Recessive genetic variation is thought to play a role in non-Hodgkin lymphoma (NHL) etiology. Runs of homozygosity (ROH), defined based on long, continuous segments of homozygous SNPs, can be used to estimate both measured and unmeasured recessive genetic variation. We sought to examine genome-wide homozygosity and NHL risk.

Methods: We used data from eight genome-wide association studies of four common NHL subtypes: 3061 chronic lymphocytic leukemia (CLL), 3814 diffuse large B-cell lymphoma (DLBCL), 2784 follicular lymphoma (FL), and 808 marginal zone lymphoma (MZL) cases, as well as 9374 controls. We examined the effect of homozygous variation on risk by: (1) estimating the fraction of the autosome containing runs of homozygosity (FROH); (2) calculating an inbreeding coefficient derived from the correlation among uniting gametes (F3); and (3) examining specific autosomal regions containing ROH. For each, we calculated beta coefficients and standard errors using logistic regression and combined estimates across studies using random-effects meta-analysis.

Results: We discovered positive associations between FROH and CLL (β = 21.1, SE = 4.41, P = 1.6 × 10-6) and FL (β = 11.4, SE = 5.82, P = 0.02) but not DLBCL (P = 1.0) or MZL (P = 0.91). For F3, we observed an association with CLL (β = 27.5, SE = 6.51, P = 2.4 × 10-5). We did not find evidence of associations with specific ROH, suggesting that the associations observed with FROH and F3 for CLL and FL risk were not driven by a single region of homozygosity.

Conclusion: Our findings support the role of recessive genetic variation in the etiology of CLL and FL; additional research is needed to identify the specific loci associated with NHL risk.

Keywords

Non-Hodgkin lymphoma / homozygosity / chronic lymphocytic leukemia / follicular lymphoma / diffuse large B-cell lymphoma / marginal zone lymphoma

Cite this article

Download citation ▾
Amy Moore, Mitchell J. Machiela, Moara Machado, Sophia S. Wang, Eleanor Kane, Susan L. Slager, Weiyin Zhou, Mary Carrington, Qing Lan, Roger L. Milne, Brenda M. Birmann, Hans-Olov Adami, Demetrius Albanes, Alan A. Arslan, Nikolaus Becker, Yolanda Benavente, Simonetta Bisanzi, Paolo Boffetta, Paige M. Bracci, Paul Brennan, Angela R. Brooks-Wilson, Federico Canzian, Neil Caporaso, Jacqueline Clavel, Pierluigi Cocco, Lucia Conde, David G. Cox, Wendy Cozen, Karen Curtin, Immaculata De Vivo, Silvia de Sanjose, Lenka Foretova, Susan M. Gapstur, Hervé Ghesquières, Graham G. Giles, Martha Glenn, Bengt Glimelius, Chi Gao, Thomas M. Habermann, Henrik Hjalgrim, Rebecca D. Jackson, Mark Liebow, Brian K. Link, Marc Maynadie, James McKay, Mads Melbye, Lucia Miligi, Thierry J. Molina, Alain Monnereau, Alexandra Nieters, Kari E. North, Kenneth Offit, Alpa V. Patel, Sara Piro, Vignesh Ravichandran, Elio Riboli, Gilles Salles, Richard K. Severson, Christine F. Skibola, Karin E. Smedby, Melissa C. Southey, John J. Spinelli, Anthony Staines, Carolyn Stewart, Lauren R. Teras, Lesley F. Tinker, Ruth C. Travis, Claire M. Vajdic, Roel C. H. Vermeulen, Joseph Vijai, Elisabete Weiderpass, Stephanie Weinstein, Nicole Wong Doo, Yawei Zhang, Tongzhang Zheng, Stephen J. Chanock, Nathaniel Rothman, James R. Cerhan, Michael Dean, Nicola J. Camp, Meredith Yeager, Sonja I. Berndt. Genome-wide homozygosity and risk of four non-Hodgkin lymphoma subtypes. Journal of Translational Genetics and Genomics, 2021, 5(2): 200-217 DOI:10.20517/jtgg.2021.08

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ChatterjeeN,CerhanJR.Risk of non-Hodgkin's lymphoma and family history of lymphatic, hematologic, and other cancers.Cancer Epidemiol Biomarkers Prev2004;13:1415-21

[2]

ChangET,HjalgrimH.Family history of hematopoietic malignancy and risk of lymphoma.J Natl Cancer Inst2005;97:1466-74

[3]

WangSS,BrennanP.Family history of hematopoietic malignancies and risk of non-Hodgkin lymphoma (NHL): a pooled analysis of 10 211 cases and 11 905 controls from the International Lymphoma Epidemiology Consortium (InterLymph).Blood2007;109:3479-88 PMCID:PMC1852242

[4]

GoldinLR,KristinssonSY,LandgrenO.Highly increased familial risks for specific lymphoma subtypes.Br J Haematol2009;146:91-4 PMCID:PMC2702464

[5]

AltieriA,HemminkiK.Familial risk for non-Hodgkin lymphoma and other lymphoproliferative malignancies by histopathologic subtype: the Swedish Family-Cancer Database.Blood2005;106:668-72

[6]

BerndtSI,SkibolaCF.Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia.Nat Commun2016;7:10933 PMCID:PMC4786871

[7]

BerndtSI,JosephV.Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia.Nat Genet2013;45:868-76 PMCID:PMC3729927

[8]

CerhanJR,VijaiJ.Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma.Nat Genet2014;46:1233-8 PMCID:PMC4213349

[9]

LawPJ,SpeedyHE.Genome-wide association analysis implicates dysregulation of immunity genes in chronic lymphocytic leukaemia.Nat Commun2017;8:14175 PMCID:PMC5303820

[10]

SkibolaCF,VijaiJ.Genome-wide association study identifies five susceptibility loci for follicular lymphoma outside the HLA region.Am J Hum Genet2014;95:462-71 PMCID:PMC4185120

[11]

VijaiJ,BerndtSI.A genome-wide association study of marginal zone lymphoma shows association to the HLA region.Nat Commun2015;6:5751 PMCID:PMC4287989

[12]

LettreG,HirschhornJN.Genetic model testing and statistical power in population-based association studies of quantitative traits.Genet Epidemiol2007;31:358-62

[13]

GibsonJ,CollinsA.Extended tracts of homozygosity in outbred human populations.Hum Mol Genet2006;15:789-95

[14]

PembertonTJ,FeldmanMW,RosenbergNA.Genomic patterns of homozygosity in worldwide human populations.Am J Hum Genet2012;91:275-92 PMCID:PMC3415543

[15]

KellerMC,GoddardME.Quantification of inbreeding due to distant ancestors and its detection using dense single nucleotide polymorphism data.Genetics2011;189:237-49 PMCID:PMC3176119

[16]

SzpiechZA,PembertonTJ.Long runs of homozygosity are enriched for deleterious variation.Am J Hum Genet2013;93:90-102 PMCID:PMC3710769

[17]

Enciso-MoraV,HoulstonRS.Risk of breast and prostate cancer is not associated with increased homozygosity in outbred populations.Eur J Hum Genet2010;18:909-14 PMCID:PMC2987391

[18]

SpainSL,HoulstonR,TomlinsonI.CORGI ConsortiumColorectal cancer risk is not associated with increased levels of homozygosity in a population from the United Kingdom.Cancer Res2009;69:7422-9

[19]

HoskingFJ,SheridanE.Genome-wide homozygosity signatures and childhood acute lymphoblastic leukemia risk.Blood2010;115:4472-7

[20]

ThomsenH,FuchsM.Evidence of inbreeding in Hodgkin lymphoma.PLoS One2016;11:e0154259 PMCID:PMC4849743

[21]

SudA,SwerdlowAJ.Genome-wide homozygosity signature and risk of Hodgkin lymphoma.Sci Rep2015;5:14315 PMCID:PMC4585760

[22]

JoshiPK,MattssonH.Directional dominance on stature and cognition in diverse human populations.Nature2015;523:459-62 PMCID:PMC4516141

[23]

CondeL,AkersNK.Genome-wide association study of follicular lymphoma identifies a risk locus at 6p21.32.Nat Genet2010;42:661-4 PMCID:PMC2913472

[24]

Vivo I, Prescott J, Setiawan VW, et al; Australian National Endometrial Cancer Study Group. Genome-wide association study of endometrial cancer in E2C2.Hum Genet2014;133:211-24 PMCID:PMC3898362

[25]

SmedbyKE,SkibolaCF.GWAS of follicular lymphoma reveals allelic heterogeneity at 6p21.32 and suggests shared genetic susceptibility with diffuse large B-cell lymphoma.PLoS Genet2011;7:e1001378 PMCID:PMC3080853

[26]

ChangCC,TellierLC,PurcellSM.Second-generation PLINK: rising to the challenge of larger and richer datasets.Gigascience2015;4:7 PMCID:PMC4342193

[27]

PurcellS,Todd-BrownK.PLINK: a tool set for whole-genome association and population-based linkage analyses.Am J Hum Genet2007;81:559-75 PMCID:PMC1950838

[28]

GazalS,PerdryH,GéninE.Inbreeding coefficient estimation with dense SNP data: comparison of strategies and application to HapMap III.Hum Hered2014;77:49-62

[29]

YangJ,GoddardME.GCTA: a tool for genome-wide complex trait analysis.Am J Hum Genet2011;88:76-82 PMCID:PMC3014363

[30]

YengoL,WrayNR.Detection and quantification of inbreeding depression for complex traits from SNP data.Proc Natl Acad Sci U S A2017;114:8602-7 PMCID:PMC5558994

[31]

WillerCJ,AbecasisGR.METAL: fast and efficient meta-analysis of genomewide association scans.Bioinformatics2010;26:2190-1 PMCID:PMC2922887

[32]

EdelmannJ,MillerF.High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations.Blood2012;120:4783-94

[33]

PuiggrosA,EspinetB.Genetic abnormalities in chronic lymphocytic leukemia: where we are and where we go.Biomed Res Int2014;2014:435983 PMCID:PMC4054680

[34]

GoldinLR,KristinssonSY,LandgrenO.Elevated risk of chronic lymphocytic leukemia and other indolent non-Hodgkin's lymphomas among relatives of patients with chronic lymphocytic leukemia.Haematologica2009;94:647-53 PMCID:PMC2675676

[35]

MalekSN.The biology and clinical significance of acquired genomic copy number aberrations and recurrent gene mutations in chronic lymphocytic leukemia.Oncogene2013;32:2805-17 PMCID:PMC3676480

[36]

RawstronAC,O'ConnorSJ.Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia.N Engl J Med2008;359:575-83

[37]

ValentinoT,VitielloM,FuscoA.PATZ1 interacts with p53 and regulates expression of p53-target genes enhancing apoptosis or cell survival based on the cellular context.Cell Death Dis2013;4:e963 PMCID:PMC3877567

[38]

ChenY,WangX.Pik3ip1 is a negative immune regulator that inhibits antitumor T-cell immunity.Clin Cancer Res2019;25:6180-94

[39]

PaulucciBP,PicciarelliP,diFrancesco RC.Expression of CysLTR1 and 2 in maturating lymphocytes of hyperplasic tonsils compared to peripheral cells in children.Inflammation2016;39:1216-24

[40]

LinetMS,MortonLM.Medical history, lifestyle, family history, and occupational risk factors for follicular lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project.J Natl Cancer Inst Monogr2014;2014:26-40 PMCID:PMC4155461

[41]

WangSS,BerndtSI.HLA Class I and II diversity contributes to the etiologic heterogeneity of non-Hodgkin lymphoma subtypes.Cancer Res2018;78:4086-96 PMCID:PMC6065509

[42]

CerhanJR,PaltielO.Medical history, lifestyle, family history, and occupational risk factors for diffuse large B-cell lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project.J Natl Cancer Inst Monogr2014;2014:15-25 PMCID:PMC4155465

[43]

HowriganDP,KellerMC.Detecting autozygosity through runs of homozygosity: a comparison of three autozygosity detection algorithms.BMC Genomics2011;12:460 PMCID:PMC3188534

[44]

AlizadehAA,DavisRE.Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling.Nature2000;403:503-11

[45]

MontiS,KutokJL.Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response.Blood2005;105:1851-61

[46]

BracciPM,TurnerJJ.Medical history, lifestyle, family history, and occupational risk factors for marginal zone lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project.J Natl Cancer Inst Monogr2014;2014:52-65 PMCID:PMC4207869

[47]

SwerdlowSH,HarrisNL. WHO classification of tumours of haematopoietic and lymphoid tissues. Geneva: IARC Press; 2008.

[48]

McQuillanR,Abdel-RahmanR.Runs of homozygosity in European populations.Am J Hum Genet2008;83:359-72 PMCID:PMC2556426

AI Summary AI Mindmap
PDF

22

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/