Toward uncharted territory of cellular heterogeneity: advances and applications of single-cell RNA-seq

Brandon Lieberman , Meena Kusi , Chia-Nung Hung , Chih-Wei Chou , Ning He , Yen-Yi Ho , Josephine A. Taverna , Tim H. M. Huang , Chun-Liang Chen

Journal of Translational Genetics and Genomics ›› 2021, Vol. 5 ›› Issue (1) : 1 -21.

PDF
Journal of Translational Genetics and Genomics ›› 2021, Vol. 5 ›› Issue (1) :1 -21. DOI: 10.20517/jtgg.2020.51
Review
review-article

Toward uncharted territory of cellular heterogeneity: advances and applications of single-cell RNA-seq

Author information +
History +
PDF

Abstract

Among single-cell analysis technologies, single-cell RNA-seq (scRNA-seq) has been one of the front runners in technical inventions. Since its induction, scRNA-seq has been well received and undergone many fast-paced technical improvements in cDNA synthesis and amplification, processing and alignment of next generation sequencing reads, differentially expressed gene calling, cell clustering, subpopulation identification, and developmental trajectory prediction. scRNA-seq has been exponentially applied to study global transcriptional profiles in all cell types in humans and animal models, healthy or with diseases, including cancer. Accumulative novel subtypes and rare subpopulations have been discovered as potential underlying mechanisms of stochasticity, differentiation, proliferation, tumorigenesis, and aging. scRNA-seq has gradually revealed the uncharted territory of cellular heterogeneity in transcriptomes and developed novel therapeutic approaches for biomedical applications. This review of the advancement of scRNA-seq methods provides an exploratory guide of the quickly evolving technical landscape and insights of focused features and strengths in each prominent area of progress.

Keywords

Single-cell RNA-seq / transcriptome / heterogeneity / multiplexing / high throughput / dimensional reduction / cancer / diseases

Cite this article

Download citation ▾
Brandon Lieberman, Meena Kusi, Chia-Nung Hung, Chih-Wei Chou, Ning He, Yen-Yi Ho, Josephine A. Taverna, Tim H. M. Huang, Chun-Liang Chen. Toward uncharted territory of cellular heterogeneity: advances and applications of single-cell RNA-seq. Journal of Translational Genetics and Genomics, 2021, 5(1): 1-21 DOI:10.20517/jtgg.2020.51

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GoldingI,ZawilskiSM.Real-time kinetics of gene activity in individual bacteria..Cell2005;123:1025-36

[2]

CaiL,XieXS.Stochastic protein expression in individual cells at the single molecule level..Nature2006;440:358-62

[3]

WangD.Single cell analysis: the new frontier in “omics”..Trends Biotechnol2010;28:281-90 PMCID:PMC2876223

[4]

KaliskyT,QuakeSR.Genomic analysis at the single-cell level..Annu Rev Genet2011;45:431-45 PMCID:PMC3878048

[5]

SwantonC.Intratumor heterogeneity: evolution through space and time..Cancer Res2012;72:4875-82 PMCID:PMC3712191

[6]

AltschulerSJ.Cellular heterogeneity: do differences make a difference?.Cell2010;141:559-63 PMCID:PMC2918286

[7]

MeachamCE.Tumour heterogeneity and cancer cell plasticity..Nature2013;501:328-37 PMCID:PMC4521623

[8]

GrafT.Heterogeneity of embryonic and adult stem cells..Cell Stem Cell2008;3:480-3

[9]

BengtssonM,RorsmanP.Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels..Genome Res2005;15:1388-92 PMCID:PMC1240081

[10]

RajA,TranchinaD,TyagiS.Stochastic mRNA synthesis in mammalian cells..PLoS Biol2006;4:e309 PMCID:PMC1563489

[11]

WaksZ.Nuclear origins of cell-to-cell variability..Cold Spring Harb Symp Quant Biol2010;75:87-94

[12]

BuenrostroJD,LitzenburgerUM.Single-cell chromatin accessibility reveals principles of regulatory variation..Nature2015;523:486-90 PMCID:PMC4685948

[13]

ShalekAK,AdiconisX.Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells..Nature2013;498:236-40 PMCID:PMC3683364

[14]

PatelAP,TrombettaJJ.Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma..Science2014;344:1396-401 PMCID:PMC4123637

[15]

GawadC,QuakeSR.Single-cell genome sequencing: current state of the science..Nat Rev Genet2016;17:175-88

[16]

IrishJM,NolanGP.Mapping normal and cancer cell signalling networks: towards single-cell proteomics..Nat Rev Cancer2006;6:146-55

[17]

TangF,BaoS.Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis..Cell Stem Cell2010;6:468-78 PMCID:PMC2954317

[18]

IslamS,MolinerA.Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq..Genome Res2011;21:1160-7 PMCID:PMC3129258

[19]

SalibaAE,GorskiSA.Single-cell RNA-seq: advances and future challenges..Nucleic Acids Res2014;42:8845-60 PMCID:PMC4132710

[20]

ChoiPJ,ShakhnovichEI.Stochastic switching in gene networks can occur by a single-molecule event or many molecular steps..J Mol Biol2010;396:230-44

[21]

GuptaPB,JiangG.Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells..Cell2011;146:633-44

[22]

NaganoT,StevensTJ.Single-cell Hi-C reveals cell-to-cell variability in chromosome structure..Nature2013;502:59-64 PMCID:PMC3869051

[23]

BaharR,RodriguezKA.Increased cell-to-cell variation in gene expression in ageing mouse heart..Nature2006;441:1011-4

[24]

KolodziejczykAA,SvenssonV,TeichmannSA.The technology and biology of single-cell RNA sequencing..Mol Cell2015;58:610-20

[25]

HaqueA,TeichmannSA.A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications..Genome Med2017;9:75 PMCID:PMC5561556

[26]

ChenCL,OsmulskiP.Single-cell analysis of circulating tumor cells identifies cumulative expression patterns of EMT-related genes in metastatic prostate cancer..Prostate2013;73:813-26 PMCID:PMC4882087

[27]

HuP,XinH.Single cell isolation and analysis..Front Cell Dev Biol2016;4:116 PMCID:PMC5078503

[28]

HwangB,BangD.Single-cell RNA sequencing technologies and bioinformatics pipelines..Exp Mol Med2018;50:96 PMCID:PMC6082860

[29]

SettyM,Reich-ZeligerS.Wishbone identifies bifurcating developmental trajectories from single-cell data..Nat Biotechnol2016;34:637-45 PMCID:PMC4900897

[30]

BendallSC,RoedererM.A deep profiler’s guide to cytometry..Trends Immunol2012;33:323-32 PMCID:PMC3383392

[31]

ReeceA,JiangZ,McBrideR.Microfluidic techniques for high throughput single cell analysis..Curr Opin Biotechnol2016;40:90-6 PMCID:PMC4975615

[32]

BaiY,WenL.Applications of microfluidics in quantitative biology..Biotechnol J2018;13:e1700170

[33]

MacoskoEZ,SatijaR.Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets..Cell2015;161:1202-14 PMCID:PMC4481139

[34]

KleinAM,AkartunaI.Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells..Cell2015;161:1187-201 PMCID:PMC4441768

[35]

ChenH,WolvetangE.High-throughput, deterministic single cell trapping and long-term clonal cell culture in microfluidic devices..Lab Chip2015;15:1072-83

[36]

EspinaV,WuG,LiottaLA.TaatjesDJ.Laser capture microdissection..Cell imaging techniques.2006;TotowaHumana Press213-29

[37]

EspinaV,CalvertVS.Laser-capture microdissection..Nat Protoc2006;1:586-603

[38]

CivitaP,AretiniP.Laser capture microdissection and RNA-Seq analysis: high sensitivity approaches to explain histopathological heterogeneity in human glioblastoma FFPE archived tissues..Front Oncol2019;9:482 PMCID:PMC6568189

[39]

DattaS,DickersonR,SenCK.Laser capture microdissection: Big data from small samples..Histol Histopathol2015;30:1255-69 PMCID:PMC4665617

[40]

CornelisonDD.Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells..Dev Biol1997;191:270-83

[41]

KammeF,YuJ.Single-cell microarray analysis in hippocampus CA1: demonstration and validation of cellular heterogeneity..J Neurosci2003;23:3607-15 PMCID:PMC6742179

[42]

TangF,NordmanE.RNA-Seq analysis to capture the transcriptome landscape of a single cell..Nat Protoc2010;5:516-35 PMCID:PMC3847604

[43]

TangF,WangY.mRNA-Seq whole-transcriptome analysis of a single cell..Nat Methods2009;6:377-82

[44]

LueckenMD.Current best practices in single-cell RNA-seq analysis: a tutorial..Mol Syst Biol2019;15:e8746 PMCID:PMC6582955

[45]

KurimotoK,OhinataY.Global single-cell cDNA amplification to provide a template for representative high-density oligonucleotide microarray analysis..Nat Protoc2007;2:739-52

[46]

KurimotoK,OhinataY.An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis..Nucleic Acids Res2006;34:e42 PMCID:PMC1409679

[47]

ZhuYY,ChenchikA,SiebertPD.Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction..Biotechniques2001;30:892-7

[48]

IslamS,JoostS.Quantitative single-cell RNA-seq with unique molecular identifiers..Nat Methods2014;11:163-6

[49]

RamsköldD,WangYC.Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells..Nat Biotechnol2012;30:777-82 PMCID:PMC3467340

[50]

PicelliS,BjörklundAK,SagasserS.Full-length RNA-seq from single cells using Smart-seq2..Nat Protoc2014;9:171-81

[51]

PicelliS,FaridaniOR,WinbergG.Smart-seq2 for sensitive full-length transcriptome profiling in single cells..Nat Methods2013;10:1096-8

[52]

FuGK,WangPH.Counting individual DNA molecules by the stochastic attachment of diverse labels..Proc Natl Acad Sci U S A2011;108:9026-31 PMCID:PMC3107322

[53]

KiviojaT,KarlssonK.Counting absolute numbers of molecules using unique molecular identifiers..Nat Methods2011;9:72-4

[54]

HashimshonyT,SherN.CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification..Cell Rep2012;2:666-73

[55]

HashimshonyT,AvitalG.CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq..Genome Biol2016;17:77 PMCID:PMC4848782

[56]

SoumillonM,SemrauS,MikkelsenTS.Characterization of directed differentiation by high-throughput single-cell RNA-Seq..BioRxiv2014;003236:

[57]

ShengK,NiuY,ZongC.Effective detection of variation in single-cell transcriptomes using MATQ-seq..Nat Methods2017;14:267-70

[58]

HayashiT,SasagawaY,DannoH.Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs..Nat Commun2018;9:619 PMCID:PMC5809388

[59]

OzsolakF,GymrekM.Digital transcriptome profiling from attomole-level RNA samples..Genome Res2010;20:519-25 PMCID:PMC2847755

[60]

SasagawaY,HayashiT.Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity..Genome Biol2013;14:R31 PMCID:PMC4054835

[61]

JaitinDA,Keren-ShaulH.Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types..Science2014;343:776-9 PMCID:PMC4412462

[62]

WölfelR,GuggemosW.Virological assessment of hospitalized patients with COVID-2019..Nature2020;581:465-9

[63]

ZhengGX,BelgraderP.Massively parallel digital transcriptional profiling of single cells..Nat Commun2017;8:14049 PMCID:PMC5241818

[64]

GierahnTM,HughesTK.Seq-well: portable, low-cost RNA sequencing of single cells at high throughput..Nat Methods2017;14:395-8 PMCID:PMC5376227

[65]

FanHC,FodorSP.Expression profiling. Combinatorial labeling of single cells for gene expression cytometry..Science2015;347:1258367

[66]

HabibN,BasuA.Massively parallel single-nucleus RNA-seq with DroNc-seq..Nat Methods2017;14:955-8 PMCID:PMC5623139

[67]

CaoJ,RamaniV.Comprehensive single-cell transcriptional profiling of a multicellular organism..Science2017;357:661-7 PMCID:PMC5894354

[68]

RosenbergAB,MuscatRA.Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding..Science2018;360:176-82 PMCID:PMC7643870

[69]

BhargavaV,WillemsE,SubramaniamS.Quantitative transcriptomics using designed primer-based amplification..Sci Rep2013;3:1740 PMCID:PMC3638165

[70]

NakamuraT,OkamotoI.SC3-seq: a method for highly parallel and quantitative measurement of single-cell gene expression..Nucleic Acids Res2015;43:e60 PMCID:PMC4482058

[71]

ZiegenhainC,ParekhS.Comparative analysis of single-cell RNA sequencing methods..Mol Cell2017;65:631-43.e4

[72]

SvenssonV,LyLH.Power analysis of single-cell RNA-sequencing experiments..Nat Methods2017;14:381-7 PMCID:PMC5376499

[73]

ZhangX,LiuF.Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-seq systems..Mol Cell2019;73:130-42.e5

[74]

MereuE,MoutinhoC.Benchmarking single-cell RNA-sequencing protocols for cell atlas projects..Nat Biotechnol2020;38:747-55

[75]

PoirionOB,ChingT.Single-cell transcriptomics bioinformatics and computational challenges..Front Genet2016;7:163 PMCID:PMC5030210

[76]

FinotelloF,HacklH.Next-generation computational tools for interrogating cancer immunity..Nat Rev Genet2019;20:724-46

[77]

ButlerA,SmibertP,SatijaR.Integrating single-cell transcriptomic data across different conditions, technologies, and species..Nat Biotechnol2018;36:411-20 PMCID:PMC6700744

[78]

SatijaR,GennertD,RegevA.Spatial reconstruction of single-cell gene expression data..Nat Biotechnol2015;33:495-502 PMCID:PMC4430369

[79]

WolfFA,TheisFJ.SCANPY: large-scale single-cell gene expression data analysis..Genome Biol2018;19:15 PMCID:PMC5802054

[80]

YangX,LiuF.HTQC: a fast quality control toolkit for Illumina sequencing data..BMC Bioinformatics2013;14:33 PMCID:PMC3571943

[81]

WoodDE.Kraken: ultrafast metagenomic sequence classification using exact alignments..Genome Biol2014;15:R46 PMCID:PMC4053813

[82]

JiangP,StewartR.Quality control of single-cell RNA-seq by SinQC..Bioinformatics2016;32:2514-6 PMCID:PMC4978927

[83]

DiazA,SandovalC.SCell: integrated analysis of single-cell RNA-seq data..Bioinformatics2016;32:2219-20 PMCID:PMC4937196

[84]

IlicicT,KolodziejczykAA.Classification of low quality cells from single-cell RNA-seq data..Genome Biol2016;17:29 PMCID:PMC4758103

[85]

TrapnellC,SalzbergSL.TopHat: discovering splice junctions with RNA-Seq..Bioinformatics2009;25:1105-11 PMCID:PMC2672628

[86]

DobinA,SchlesingerF.STAR: ultrafast universal RNA-seq aligner..Bioinformatics2013;29:15-21 PMCID:PMC3530905

[87]

KimD,SalzbergSL.HISAT: a fast spliced aligner with low memory requirements..Nat Methods2015;12:357-60 PMCID:PMC4655817

[88]

BrayNL,MelstedP.Near-optimal probabilistic RNA-seq quantification..Nat Biotechnol2016;34:525-7

[89]

PatroR,LoveMI,KingsfordC.Salmon provides fast and bias-aware quantification of transcript expression..Nat Methods2017;14:417-9 PMCID:PMC5600148

[90]

SrivastavaA,SarkarH.Alignment and mapping methodology influence transcript abundance estimation..Genome Biol2020;21:239 PMCID:PMC7487471

[91]

LytalN,AnL.Normalization methods on single-cell RNA-seq data: an empirical survey..Front Genet2020;11:41 PMCID:PMC7019105

[92]

HafemeisterC.Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression..Genome Biol2019;20:296 PMCID:PMC6927181

[93]

KatayamaS,LinnarssonS.SAMstrt: statistical test for differential expression in single-cell transcriptome with spike-in normalization..Bioinformatics2013;29:2943-5 PMCID:PMC3810855

[94]

VallejosCA,RichardsonS.BASiCS: bayesian analysis of single-cell sequencing data..PLoS Comput Biol2015;11:e1004333 PMCID:PMC4480965

[95]

DingB,ZhuY.Normalization and noise reduction for single cell RNA-seq experiments..Bioinformatics2015;31:2225-7 PMCID:PMC4481848

[96]

LunAT,MarioniJC.Pooling across cells to normalize single-cell RNA sequencing data with many zero counts..Genome Biol2016;17:75 PMCID:PMC4848819

[97]

BacherR,LengN.SCnorm: robust normalization of single-cell RNA-seq data..Nat Methods2017;14:584-6 PMCID:PMC5473255

[98]

YipSH,KocherJA,WangJ.Corrigendum: Linnorm: improved statistical analysis for single cell RNA-seq expression data..Nucleic Acids Res2017;45:13097 PMCID:PMC5728397

[99]

RobinsonMD.A scaling normalization method for differential expression analysis of RNA-seq data..Genome Biol2010;11:R25 PMCID:PMC2864565

[100]

RobinsonMD,SmythGK.edgeR: a bioconductor package for differential expression analysis of digital gene expression data..Bioinformatics2010;26:139-40 PMCID:PMC2796818

[101]

LoveMI,AndersS.Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2..Genome Biol2014;15:550 PMCID:PMC4302049

[102]

TianL,FreytagS.Benchmarking single cell RNA-sequencing analysis pipelines using mixture control experiments..Nat Methods2019;16:479-87

[103]

KadotaK.Commentary: a systematic evaluation of single cell RNA-Seq analysis pipelines..Front Genet2020;11:941 PMCID:PMC7500360

[104]

KadotaK,ShimizuK.A normalization strategy for comparing tag count data..Algorithms Mol Biol2012;7:5 PMCID:PMC3341196

[105]

WagnerF,YanaiI.K-nearest neighbor smoothing for high-throughput single-cell RNA-Seq data..bioRxiv2018;217737:

[106]

GongW,PotaP,GarryDJ.DrImpute: imputing dropout events in single cell RNA sequencing data..BMC Bioinformatics2018;19:220 PMCID:PMC5994079

[107]

HuangM,TorreE.SAVER: gene expression recovery for single-cell RNA sequencing..Nat Methods2018;15:539-42 PMCID:PMC6030502

[108]

AndrewsTS.False signals induced by single-cell imputation..F1000Res2018;7:1740 PMCID:PMC6415334

[109]

SvenssonV.Droplet scRNA-seq is not zero-inflated..Nat Biotechnol2020;38:147-50

[110]

TranHTN,ChevrierM.A benchmark of batch-effect correction methods for single-cell RNA sequencing data..Genome Biol2020;21:12 PMCID:PMC6964114

[111]

HaghverdiL,MorganMD.Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors..Nat Biotechnol2018;36:421-7 PMCID:PMC6152897

[112]

StuartT,HoffmanP.Comprehensive integration of single-cell data..Cell2019;177:1888-902.e21 PMCID:PMC6687398

[113]

KorsunskyI,FanJ.Fast, sensitive and accurate integration of single-cell data with Harmony..Nat Methods2019;16:1289-96 PMCID:PMC6884693

[114]

LinY,WangKYX.scMerge leverages factor analysis, stable expression, and pseudoreplication to merge multiple single-cell RNA-seq datasets..Proc Natl Acad Sci U S A2019;116:9775-84 PMCID:PMC6525515

[115]

BuettnerF,CasaleFP.Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells..Nat Biotechnol2015;33:155-60

[116]

BarronM.Identifying and removing the cell-cycle effect from single-cell RNA-Sequencing data..Sci Rep2016;6:33892 PMCID:PMC5037372

[117]

WangT,NelsonCE.Comparative analysis of differential gene expression analysis tools for single-cell RNA sequencing data..BMC Bioinformatics2019;20:40 PMCID:PMC6339299

[118]

Van Der MaatenL.Accelerating t-SNE using tree-based algorithms..J Mach Learn Res2015;15:3221-45

[119]

Van Der MaatenL.Visualizing data using t-SNE..J Mach Learn Res2008;9:2579-625

[120]

BechtE,HealyJ.Dimensionality reduction for visualizing single-cell data using UMAP..Nat Biotechnol2018;38-44

[121]

ChenG,ShiT.Single-cell RNA-Seq technologies and related computational data analysis..Front Genet2019;10:317 PMCID:PMC6460256

[122]

KiselevVY,HembergM.Challenges in unsupervised clustering of single-cell RNA-seq data..Nat Rev Genet2019;20:273-82

[123]

CaoJ,QiuX.The single-cell transcriptional landscape of mammalian organogenesis..Nature2019;566:496-502 PMCID:PMC6434952

[124]

MuQ,WangJ.Deciphering brain complexity using single-cell sequencing..Genomics Proteomics Bioinformatics2019;17:344-66 PMCID:PMC6943771

[125]

OfengeimD,HuhD,YuanJ.Single-cell RNA sequencing: unraveling the brain one cell at a time..Trends Mol Med2017;23:563-76 PMCID:PMC5531055

[126]

PotterSS.Single-cell RNA sequencing for the study of development, physiology and disease..Nat Rev Nephrol2018;14:479-92 PMCID:PMC6070143

[127]

RanzoniAM.Single-cell biology: resolving biological complexity, one cell at a time..Development2018;145:dev163972

[128]

LevitinHM,SimsPA.Single-cell transcriptomic analysis of tumor heterogeneity..Trends Cancer2018;4:264-8 PMCID:PMC5993208

[129]

ZhangQ,LuoN.Landscape and dynamics of single immune cells in hepatocellular carcinoma..Cell2019;179:829-45.e20

[130]

HorningAM,LinCK.Single-cell RNA-seq reveals a subpopulation of prostate cancer cells with enhanced cell-cycle-related transcription and attenuated androgen response..Cancer Res2018;78:853-64 PMCID:PMC5983359

[131]

WangW,StuartT.A single-cell transcriptional roadmap for cardiopharyngeal fate diversification..Nat Cell Biol2019;21:674-86 PMCID:PMC7491489

[132]

KharchenkoPV,ScaddenDT.Bayesian approach to single-cell differential expression analysis..Nat Methods2014;11:740-2 PMCID:PMC4112276

[133]

FanJ,LiuR.Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis..Nat Methods2016;13:241-4 PMCID:PMC4772672

[134]

WangT.SigEMD: a powerful method for differential gene expression analysis in single-cell RNA sequencing data..Methods2018;145:25-32

[135]

GuoM,PotterSS,XuY.SINCERA: a pipeline for single-cell RNA-Seq profiling analysis..PLoS Comput Biol2015;11:e1004575 PMCID:PMC4658017

[136]

PiersonE.ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis..Genome Biol2015;16:241 PMCID:PMC4630968

[137]

WangB,PiersonE,BatzoglouS.Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning..Nat Methods2017;14:414-6

[138]

BoseS,CarrA.Scalable microfluidics for single-cell RNA printing and sequencing..Genome Biol2015;16: PMCID:PMC4487847

[139]

HouR,ForrestARR.scMatch: a single-cell gene expression profile annotation tool using reference datasets..Bioinformatics2019;35:4688-95 PMCID:PMC6853649

[140]

AranD,LiuL.Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage..Nat Immunol2019;20:163-72 PMCID:PMC6340744

[141]

CaoZJ,LuS,GaoG.Searching large-scale scRNA-seq databases via unbiased cell embedding with Cell BLAST..Nat Commun2020;11:3458 PMCID:PMC7351785

[142]

TritschlerS,FischerDS.Concepts and limitations for learning developmental trajectories from single cell genomics..Development2019;146:dev170506

[143]

PangB,HuJ.Single-cell RNA-seq reveals the invasive trajectory and molecular cascades underlying glioblastoma progression..Mol Oncol2019;13:2588-603 PMCID:PMC6887585

[144]

HaghverdiL,WolfFA,TheisFJ.Diffusion pseudotime robustly reconstructs lineage branching..Nat Methods2016;13:845-8

[145]

ChenH,HsuJY.Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM..Nat Commun2019;10:1903 PMCID:PMC6478907

[146]

ChestnutB,KoenigAL.Single-cell transcriptomic analysis identifies the conversion of zebrafish Etv2-deficient vascular progenitors into skeletal muscle..Nat Commun2020;11:2796 PMCID:PMC7271194

[147]

JiZ.TSCAN: pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis..Nucleic Acids Res2016;44:e117 PMCID:PMC4994863

[148]

StreetK,FletcherRB.Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics..BMC Genomics2018;19:477 PMCID:PMC6007078

[149]

TrapnellC,GrimsbyJ.The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells..Nat Biotechnol2014;32:381-6 PMCID:PMC4122333

[150]

ShinJ,ZhuY.Single-cell RNA-Seq with waterfall reveals molecular cascades underlying adult neurogenesis..Cell Stem Cell2015;17:360-72

[151]

MarcoE,GuoG.Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape..Proc Natl Acad Sci U S A2014;111:E5643-50 PMCID:PMC4284553

[152]

SingerM.Revolutionizing cancer immunology: the power of next-generation sequencing technologies..Cancer Immunol Res2019;7:168-73 PMCID:PMC6366855

[153]

GiladiA.Single-cell genomics: a stepping stone for future immunology discoveries..Cell2018;172:14-21

[154]

CloonanN,KolleG.Stem cell transcriptome profiling via massive-scale mRNA sequencing..Nat Methods2008;5:613-9

[155]

YanL,GuoH.Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells..Nat Struct Mol Biol2013;20:1131-9

[156]

BiaseFH,ZhongS.Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing..Genome Res2014;24:1787-96 PMCID:PMC4216920

[157]

DengQ,ReiniusB.Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells..Science2014;343:193-6

[158]

PetropoulosS,ReiniusB.Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos..Cell2016;167:285 PMCID:PMC5628172

[159]

PapalexiE.Single-cell RNA sequencing to explore immune cell heterogeneity..Nat Rev Immunol2018;18:35-45

[160]

Bar-OnL,LewisKL.CX3CR1+ CD8alpha+ dendritic cells are a steady-state population related to plasmacytoid dendritic cells..Proc Natl Acad Sci U S A2010;107:14745-50 PMCID:PMC2930429

[161]

HumeDA.Applications of myeloid-specific promoters in transgenic mice support in vivo imaging and functional genomics but do not support the concept of distinct macrophage and dendritic cell lineages or roles in immunity..J Leukoc Biol2011;89:525-38

[162]

RosenbergR,FriederichsJ.Comparison of two density gradient centrifugation systems for the enrichment of disseminated tumor cells in blood..Cytometry2002;49:150-8

[163]

ZhuJ,PaulWE.Differentiation of effector CD4 T cell populations (*)..Annu Rev Immunol2010;28:445-89 PMCID:PMC3502616

[164]

MahataB,KolodziejczykAA.Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis..Cell Rep2014;7:1130-42 PMCID:PMC4039991

[165]

DesaiTJ,KrasnowMA.Alveolar progenitor and stem cells in lung development, renewal and cancer..Nature2014;507:190-4 PMCID:PMC4013278

[166]

KimCF,WoolfendenAE.Identification of bronchioalveolar stem cells in normal lung and lung cancer..Cell2005;121:823-35

[167]

TreutleinB,WuAR.Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq..Nature2014;509:371-5 PMCID:PMC4145853

[168]

GrünD,KesterL.Single-cell messenger RNA sequencing reveals rare intestinal cell types..Nature2015;525:251-5

[169]

HammoudSS,YiC.Transcription and imprinting dynamics in developing postnatal male germline stem cells..Genes Dev2015;29:2312-24 PMCID:PMC4647563

[170]

LauX,NgMJ.Single-cell RNA sequencing of the cynomolgus macaque testis reveals conserved transcriptional profiles during mammalian spermatogenesis..Dev Cell2020;54:548-66.e7

[171]

GreenCD,ManskeGL.A comprehensive roadmap of murine spermatogenesis defined by single-cell RNA-Seq..Dev Cell2018;46:651-67.e10 PMCID:PMC6713459

[172]

MuraroMJ,GrünD.A single-cell transcriptome Atlas of the human pancreas..Cell Syst2016;3:385-394.e3 PMCID:PMC5092539

[173]

KepecsA.Interneuron cell types are fit to function..Nature2014;505:318-26 PMCID:PMC4349583

[174]

ZeiselA,CodeluppiS.Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq..Science2015;347:1138-42

[175]

ZeiselA,LönnerbergP.Molecular architecture of the mouse nervous system..Cell2018;174:999-1014.e22 PMCID:PMC6086934

[176]

DrokhlyanskyE,Van WittenbergheN.The human and mouse enteric nervous system at single-cell resolution..Cell2020;182:1606-22.e23

[177]

AlmendroV,PolyakK.Cellular heterogeneity and molecular evolution in cancer..Annu Rev Pathol2013;8:277-302

[178]

TiroshI,HebertC.Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma..Nature2016;539:309-13 PMCID:PMC5465819

[179]

MiyamotoDT,WittnerBS.RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance..Science2015;349:1351-6 PMCID:PMC4872391

[180]

TiroshI,PrakadanSM.Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq..Science2016;352:189-96 PMCID:PMC4944528

[181]

HongSP,LombardoY.Single-cell transcriptomics reveals multi-step adaptations to endocrine therapy..Nat Commun2019;10:3840 PMCID:PMC6718416

[182]

McCrayT,BaumannB,NonnL.Single-cell RNA-Seq analysis identifies a putative epithelial stem cell population in human primary prostate cells in monolayer and organoid culture conditions..Am J Clin Exp Urol2019;7:123-38 PMCID:PMC6627543

[183]

MaynardA,RotowJK.Therapy-induced evolution of human lung cancer revealed by single-cell RNA sequencing..Cell2020;182:1232-51.e22 PMCID:PMC7484178

[184]

DavidsonS,RiedelA.Single-cell RNA sequencing reveals a dynamic stromal niche that supports tumor growth..Cell Rep2020;31:107628 PMCID:PMC7242909

[185]

MoonTS,TamsirA,VoigtCA.Genetic programs constructed from layered logic gates in single cells..Nature2012;491:249-53 PMCID:PMC3904217

[186]

FanX,WuX.Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos..Genome Biol2015;16:148 PMCID:PMC4511241

[187]

SasagawaY,TakadaH.Quartz-Seq2: a high-throughput single-cell RNA-sequencing method that effectively uses limited sequence reads..Genome Biol2018;19:29 PMCID:PMC5845169

[188]

EwelsP,LundinS.MultiQC: summarize analysis results for multiple tools and samples in a single report..Bioinformatics2016;32:3047-8 PMCID:PMC5039924

[189]

KimD,TrapnellC,KelleyR.TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions..Genome Biol2013;14:R36 PMCID:PMC4053844

[190]

WuTD.Fast and SNP-tolerant detection of complex variants and splicing in short reads..Bioinformatics2010;26:873-81 PMCID:PMC2844994

[191]

WangK,ZengZ.MapSplice: accurate mapping of RNA-seq reads for splice junction discovery..Nucleic Acids Res2010;38:e178 PMCID:PMC2952873

[192]

PerteaM,AntonescuCM,MendellJT.StringTie enables improved reconstruction of a transcriptome from RNA-seq reads..Nat Biotechnol2015;33:290-5 PMCID:PMC4643835

[193]

AndersS,HuberW.HTSeq--a Python framework to work with high-throughput sequencing data..Bioinformatics2015;31:166-9 PMCID:PMC4287950

[194]

LiaoY,ShiW.featureCounts: an efficient general purpose program for assigning sequence reads to genomic features..Bioinformatics2014;30:923-30

[195]

LiB.RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome..BMC Bioinformatics2011;12:323 PMCID:PMC3163565

[196]

TrapnellC,PerteaG.Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation..Nat Biotechnol2010;28:511-5 PMCID:PMC3146043

[197]

McCarthyDJ,LunAT.Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R..Bioinformatics2017;33:1179-86 PMCID:PMC5408845

[198]

ZhuX,TasatoA,GarmireDG.Granatum: a graphical single-cell RNA-Seq analysis pipeline for genomics scientists..Genome Med2017;9:108 PMCID:PMC5716224

[199]

GardeuxV,ShajkofciA,DeplanckeB.ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data..Bioinformatics2017;33:3123-5 PMCID:PMC5870842

[200]

LotfollahiM,TheisFJ.scGen predicts single-cell perturbation responses..Nat Methods2019;16:715-21

[201]

SongY,LovciMT.Single-cell alternative splicing analysis with expedition reveals splicing dynamics during neuron differentiation..Mol Cell2017;67:148-61.e5 PMCID:PMC5540791

[202]

HuangY.BRIE: transcriptome-wide splicing quantification in single cells..Genome Biol2017;18:123 PMCID:PMC5488362

[203]

QiuX,PackerJ,MaYA.Single-cell mRNA quantification and differential analysis with Census..Nat Methods2017;14:309-15 PMCID:PMC5330805

[204]

WelchJD,PrinsJF.Robust detection of alternative splicing in a population of single cells..Nucleic Acids Res2016;44:e73 PMCID:PMC4856971

[205]

JohnsonWE,RabinovicA.Adjusting batch effects in microarray expression data using empirical Bayes methods..Biostatistics2007;8:118-27

[206]

AngererP,BüttnerM,MarrC.Destiny: diffusion maps for large-scale single-cell data in R..Bioinformatics2016;32:1241-3

[207]

AhmedS,BoukouvalasA.GrandPrix: scaling up the Bayesian GPLVM for single-cell data..Bioinformatics2019;35:47-54 PMCID:PMC6298059

[208]

Lummertz da RochaE,LundinV.Reconstruction of complex single-cell trajectories using CellRouter..Nat Commun2018;9:892 PMCID:PMC5832860

AI Summary AI Mindmap
PDF

185

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/