New diagnostic pathways for mitochondrial disease
Eloise Watson , Ryan Davis , Carolyn M. Sue
Journal of Translational Genetics and Genomics ›› 2020, Vol. 4 ›› Issue (3) : 188 -202.
New diagnostic pathways for mitochondrial disease
Mitochondrial diseases collectively represent the most common cause of inherited metabolic disease. They are estimated to affect at least 1 in 8,000 adults and at least 1 in 250 adults carry a disease-causing genetic mutation. They comprise a heterogeneous group of disorders caused by mutations in either the nuclear or mitochondrial genome, which ultimately result in dysfunction of the critical cellular energy producing mitochondrial respiratory chain. Owing to the key role of mitochondria in energy production, mitochondrial disorders predominantly manifest in tissues with high metabolic demand. However, they demonstrate significant phenotypic and genotypic variability, often rendering the diagnostic process protracted and challenging. Since Luft’s first description of mitochondrial disease nearly 60 years ago, substantial evolution in diagnostic techniques have simultaneously improved the diagnosis and understanding of mitochondrial disease and biology, but the standard diagnostic approach has failed to evolve at the same pace. Although sequencing technologies and analysis for the diagnosis of mitochondrial disease continue to evolve, advances to date, our expanding understanding of mitochondrial diseases and the increasing affordability of these new technologies justify a paradigm shift in the diagnostic approach. We review the progression, impact and challenges of diagnosing mitochondrial diseases and propose a minimally invasive “genetics first” approach incorporating stratification using non-invasive biomarkers, followed by non-targeted next-generation sequencing, such as whole genome sequencing. Such an approach may improve diagnostic yield and streamline diagnosis, leaving invasive investigations to address diagnostic challenges and functional validation of novel variants.
Mitochondrial disease / diagnosis / next-generation sequencing / genetics
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
/
| 〈 |
|
〉 |