Human induced pluripotent cells in personalized treatment of monogenic epilepsies

Nazanin A. Mohammadi , Kristine Freude , Henriette Haukedal , Zeynep Tümer , Rikke S. Møller

Journal of Translational Genetics and Genomics ›› 2020, Vol. 4 ›› Issue (3) : 238 -250.

PDF
Journal of Translational Genetics and Genomics ›› 2020, Vol. 4 ›› Issue (3) :238 -250. DOI: 10.20517/jtgg.2020.29
Review
Review

Human induced pluripotent cells in personalized treatment of monogenic epilepsies

Author information +
History +
PDF

Abstract

The broad application of next-generation sequencing in genetic diagnostics opens up vast possibilities for personalized treatment of patients with genetic disorders including monogenic epilepsies. To translate genetic findings into personalized medicine, mechanistic studies of the individual pathogenic variants and drug screening in patient-specific in vitro models are very crucial. Recently, human induced pluripotent stem cell (hiPSC) technologies have made it possible to generate patient-specific pluripotent cells, which can be directed to differentiate into any given cell type. These hiPSCs are ideal for generating neurons to investigate specific neurological/neurodevelopmental disorders. While two-dimensional single-cell models of hiPSC-derived neurons provide reliable investigation of synaptic transmission and plasticity, cerebral organoids are superior in regard to functional characterization and the study of cell-cell interactions in three-dimensional structures. In this review, we focus on monogenic epilepsies and discuss the application of hiPSC models in personalized drug treatment based on the patient’s specific genetic variants.

Keywords

Genetic epilepsy / human induced pluripotent stem cells / hiPSC / monogenic disorder / neurons / organoids / personalized medicine

Cite this article

Download citation ▾
Nazanin A. Mohammadi, Kristine Freude, Henriette Haukedal, Zeynep Tümer, Rikke S. Møller. Human induced pluripotent cells in personalized treatment of monogenic epilepsies. Journal of Translational Genetics and Genomics, 2020, 4(3): 238-250 DOI:10.20517/jtgg.2020.29

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

England MJ,Schultz AM.Summary: a reprint from epilepsy across the spectrum: promoting health and understanding..Epilepsy Curr2012;12:245-53 PMCID:PMC3577135

[2]

Epilepsy. 2019. Available from: https://www.who.int/news-room/fact-sheets/detail/epilepsy [Last accessed on 9 Jun 2020]

[3]

Fisher RS,Warren B,Pierre G.Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE)..Epilepsia2005;46:470-2

[4]

Stafstrom CE.Seizures and epilepsy: an overview for neuroscientists..Cold Spring Harb Perspect Med2015;5:a022426 PMCID:PMC4448698

[5]

Mormann F,Andrzejak RG,Lehnertz K.Epileptic seizures are preceded by a decrease in synchronization..Epilepsy Res2003;53:173-85

[6]

Moller RS,Rubboli G,Johannesen KM.From next-generation sequencing to targeted treatment of non-acquired epilepsies..Expert Rev Mol Diagn2019;19:217-28

[7]

Brunklaus A,Steckler F,Johannesen KM.Biological concepts in human sodium channel epilepsies and their relevance in clinical practice..Epilepsia2020;61:387-99

[8]

Wolff M,Hedrich UBS,Rubboli G.Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders..Brain2017;140:1316-36

[9]

Moller RS,Johannesen KM,Talvik T.Gene panel testing in epileptic encephalopathies and familial epilepsies..Mol Syndromol2016;7:210-9 PMCID:PMC5073625

[10]

Gardella E.Phenotypic and genetic spectrum of SCN8A-related disorders, treatment options, and outcomes..Epilepsia2019;60:S77-85

[11]

Kim JB.Channelopathies..Korean J Pediatr2014;57:1-18 PMCID:PMC3935107

[12]

Oyrer J,Scheffer IE,Petrou S.Ion channels in genetic epilepsy: from genes and mechanisms to disease-targeted therapies..Pharmacol Rev2018;70:142-73 PMCID:PMC5738717

[13]

Milligan CJ,Gazina EV,Nair U.KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine..Ann Neurol2014;75:581-90 PMCID:PMC4158617

[14]

Masnada S,Gardella E,Kaiwar C.Clinical spectrum and genotype-phenotype associations of KCNA2-related encephalopathies..Brain2017;140:2337-54

[15]

Jiang X,D’Avanzo N,Pepin J.Both gain-of-function and loss-of-function de novo CACNA1A mutations cause severe developmental epileptic encephalopathies in the spectrum of Lennox-Gastaut syndrome..Epilepsia2019;60:1881-94

[16]

Strehlow V,Vlaskamp DRW,Rudolf G.GRIN2A-related disorders: genotype and functional consequence predict phenotype..Brain2019;142:80-92 PMCID:PMC6308310

[17]

Shao LR,Stafstrom CE.Pediatric epilepsy mechanisms: expanding the paradigm of excitation/inhibition imbalance..Children (Basel)2019;6:23 PMCID:PMC6406372

[18]

Marafiga JR,Calcagnotto ME.GABAergic interneurons in epilepsy: more than a simple change in inhibition..Epilepsy Behav2020;106935:

[19]

Perucca P.Antiepileptic drug effects on mood and behavior: molecular targets..Epilepsy Behav2013;26:440-9

[20]

Wang J,Liu L,Shi YW.Epilepsy-associated genes..Seizure2017;44:11-20

[21]

Heyne HO,Stamberger H,Caglayan H.De novo variants in neurodevelopmental disorders with epilepsy..Nat Genet2018;50:1048-53

[22]

Maljevic S,Petrou S.Models for discovery of targeted therapy in genetic epileptic encephalopathies..J Neurochem2017;143:30-48

[23]

Reid CA,Petrou S.Mechanisms of human inherited epilepsies..Prog Neurobiol2009;87:41-57

[24]

Bando Y,Cornejo VH.Genetic voltage indicators..BMC Biol2019;17:71 PMCID:PMC6739974

[25]

Barker BS,Wagnon JL,Meisler MH.The SCN8A encephalopathy mutation p.Ile1327Val displays elevated sensitivity to the anticonvulsant phenytoin..Epilepsia2016;57:1458-66 PMCID:PMC5012949

[26]

Zeng SL,Berezin MY.Using Xenopus oocytes in neurological disease drug discovery..Expert Opinion on Drug Discovery2020;15:39-52 PMCID:PMC6893134

[27]

Quraishi IH,Mangan KP,Ali SR.An epilepsy-associated KCNT1 mutation enhances excitability of human iPSC-derived neurons by increasing slack KNa currents..J Neurosci2019;39:7438-49 PMCID:PMC6759030

[28]

Grabole N,Aigner S,Costa V.Genomic analysis of the molecular neuropathology of tuberous sclerosis using a human stem cell model..Genome Med2016;8:94 PMCID:PMC5031259

[29]

Homan CC,To TH,Piltz S.PCDH19 regulation of neural progenitor cell differentiation suggests asynchrony of neurogenesis as a mechanism contributing to PCDH19 girls clustering epilepsy..Neurobiol Dis2018;116:106-19

[30]

Higurashi N,Lossin C,Okada Y.A human dravet syndrome model from patient induced pluripotent stem cells..Mol Brain2013;6:19 PMCID:PMC3655893

[31]

Liu Y,Yuan Y,Zhang H.Dravet syndrome patient-derived neurons suggest a novel epilepsy mechanism..Ann Neurol2013;74:128-39 PMCID:PMC3775921

[32]

Stanurova J,Hiber M,Stolp K.Angelman syndrome-derived neurons display late onset of paternal UBE3A silencing..Sci Rep2016;6:30792 PMCID:PMC4971516

[33]

Chamberlain SJ,Ng KY,Lemtiri-Chlieh F.Induced pluripotent stem cell models of the genomic imprinting disorders angelman and prader-willi syndromes..Proc Natl Acad Sci USA2010;107:17668-73 PMCID:PMC2955112

[34]

Bayat A,Møller RS.The incidence of SCN1A-related dravet syndrome in denmark is 1:22,000: a population-based study from 2004 to 2009..Epilepsia2015;56:36-9

[35]

Maeda H,Yoshida M,Zuiki M.Establishment of isogenic iPSCs from an individual with SCN1A mutation mosaicism as a model for investigating neurocognitive impairment in dravet syndrome..J Hum Genet2016;61:565-9

[36]

Fan J,Kwagh J,Shi H.Assessing seizure liability using multi-electrode arrays (MEA)..Toxicol In Vitro2019;55:93-100

[37]

Liu J,Ghiasvand S.Epilepsy-on-a-chip system for antiepileptic drug discovery..IEEE Trans Biomed Eng2019;66:1231-41 PMCID:PMC6585967

[38]

Odawara A,Ishibashi Y,Suzuki I.Toxicological evaluation of convulsant and anticonvulsant drugs in human induced pluripotent stem cell-derived cortical neuronal networks using an MEA system..Sci Rep2018;8:10416 PMCID:PMC6039442

[39]

Takahashi K.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors..Cell2006;126:663-76

[40]

Takahashi K,Ohnuki M,Ichisaka T.Induction of pluripotent stem cells from adult human fibroblasts by defined factors..Cell2007;131:861-72

[41]

Haase A,Schwanke K,Merkert S.Generation of induced pluripotent stem cells from human cord blood..Cell Stem Cell2009;5:434-41

[42]

Luo S,Ma F,Shen Y.ZYZ451 protects cardiomyocytes from hypoxia-induced apoptosis via enhancing MnSOD and STAT3 interaction..Free Radic Biol Med2016;92:1-14

[43]

Malik N.A review of the methods for human iPSC derivation..Methods Mol Biol2013;997:23-33 PMCID:PMC4176696

[44]

Vlahos K,Mayberry R,Bruveris FF.Generation of iPSC lines from peripheral blood mononuclear cells from 5 healthy adults..Stem Cell Res2019;34:101380

[45]

Kamath A,McGowan S.Virus-free and oncogene-free induced pluripotent stem cell reprogramming in cord blood and peripheral blood in patients with lung disease..Regen Med2018;13:889-915

[46]

Haase A,Martin U.Generation of non-transgenic iPS cells from human cord blood CD34(+) cells under animal component-free conditions..Stem Cell Res2017;21:71-3

[47]

Okumura T,Lai CY,Shoda H.Robust and highly efficient hiPSC generation from patient non-mobilized peripheral blood-derived CD34+ cells using the auto-erasable Sendai virus vector..Stem Cell Res Ther2019;10:185 PMCID:PMC6591940

[48]

Simara P,Rehakova D,Salingova B.Reprogramming of adult peripheral blood cells into human induced pluripotent stem cells as a safe and accessible source of endothelial cells..Stem Cells Dev2018;27:10-22 PMCID:PMC5756468

[49]

Staerk J,Gao Q,Hanna J.Reprogramming of human peripheral blood cells to induced pluripotent stem cells..Cell Stem Cell2010;7:20-4 PMCID:PMC2917234

[50]

Merling RK,Choi U,Myers TG.Transgene-free iPSCs generated from small volume peripheral blood nonmobilized CD34+ cells..Blood2013;121:e98-107 PMCID:PMC3617640

[51]

Bang JS,Lee M,Lee HJ.Optimization of episomal reprogramming for generation of human induced pluripotent stem cells from fibroblasts..Anim Cells Syst (Seoul)2018;22:132-9 PMCID:PMC6138300

[52]

Lim SJ,Mok PL,Ong AHK.Induced pluripotent stem cells from human hair follicle keratinocytes as a potential source for in vitro hair follicle cloning..Peer J2016;4:e2695 PMCID:PMC5111897

[53]

Matsumura W,Nakayama C,Suzuki S.Establishment of integration-free induced pluripotent stem cells from human recessive dystrophic epidermolysis bullosa keratinocytes..J Dermatol Sci2018;89:263-71

[54]

Kimura H,Shibata S,Nagoshi N.Stem cells purified from human induced pluripotent stem cell-derived neural crest-like cells promote peripheral nerve regeneration..Sci Rep2018;8:10071 PMCID:PMC6030210

[55]

Shi L,Luan J,Han J.Urine-derived induced pluripotent stem cells as a modeling tool to study rare human diseases..Intractable Rare Dis Res2016;5:192-201 PMCID:PMC4995418

[56]

Gaignerie A,Rousselle M,Flippe L.Urine-derived cells provide a readily accessible cell type for feeder-free mRNA reprogramming..Sci Rep2018;8:14363 PMCID:PMC6156222

[57]

Li Y,Tsang SH.Skin biopsy and patient-specific stem cell lines..Methods Mol Biol2016;1353:77-88 PMCID:PMC4836060

[58]

Klein T,Kwok CK,Üçeyler N.Generation of the human induced pluripotent stem cell line (UKWNLi001-A) from skin fibroblasts of a woman with fabry disease carrying the X-chromosomal heterozygous c.708G>C (W236C) missense mutation in exon 5 of the alpha-galactosidase-A gene..Stem Cell Res2018;31:222-6

[59]

Karumbayaram S,Azghadi SF,Patterson M.From skin biopsy to neurons through a pluripotent intermediate under good manufacturing practice protocols..Stem Cells Transl Med2012;1:36-43 PMCID:PMC3727693

[60]

Jinek M,Fonfara I,Doudna JA.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity..Science2012;337:816-21 PMCID:PMC6286148

[61]

Doudna JA.Genome editing. The new frontier of genome engineering with CRISPR-Cas9..Science2014;346:1258096

[62]

Zhang Y,Han Y,Zhang Z.Rapid single-step induction of functional neurons from human pluripotent stem cells..Neuron2013;78:785-98 PMCID:PMC3751803

[63]

Lee S,Ryu HW,Min JJ.ZW800-1 for assessment of blood-brain barrier disruption in a photothrombotic stroke model..Int J Med Sci2017;14:1430-5 PMCID:PMC5707760

[64]

Chambers SM,Papapetrou EP,Sadelain M.Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling..Nat Biotechnol2009;27:275-80 PMCID:PMC2756723

[65]

Watabe T.Roles of TGF-beta family signaling in stem cell renewal and differentiation..Cell Res2009;19:103-15

[66]

Nadadhur AG,Meijer M,Jacobs G.Multi-level characterization of balanced inhibitory-excitatory cortical neuron network derived from human pluripotent stem cells..PLoS One2017;12:e0178533 PMCID:PMC5460818

[67]

Simkin D.Modeling pediatric epilepsy through iPSC-based technologies..Epilepsy Curr2018;18:240-5 PMCID:PMC6145379

[68]

Tidball AM,Chamberlin R,Kumar KK.Genomic instability associated with p53 knockdown in the generation of huntington’s disease human induced pluripotent stem cells..PLoS One2016;11:e0150372 PMCID:PMC4794230

[69]

Mariani J,Zhang P,Provini L.FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders..Cell2015;162:375-90 PMCID:PMC4519016

[70]

Bershteyn M,Pollen AA,Nene A.Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia..Cell Stem Cell2017;20:435-49.e4 PMCID:PMC5667944

[71]

Birey F,Makinson CD,Wei W.Assembly of functionally integrated human forebrain spheroids..Nature2017;545:54-9 PMCID:PMC5805137

[72]

Sloan SA,Paşca AM,Paşca SP.Generation and assembly of human brain region-specific three-dimensional cultures..Nat Protoc2018;13:2062-85 PMCID:PMC6597009

[73]

Lancaster MA,Martin CA,Bicknell LS.Cerebral organoids model human brain development and microcephaly..Nature2013;501:373-9 PMCID:PMC3817409

[74]

Krefft O,Iefremova V,Ladewig J.Generation of Standardized and Reproducible Forebrain-type cerebral organoids from human induced pluripotent stem cells..J Vis Exp2018;131:56768 PMCID:PMC5908685

[75]

Grebenyuk S.Engineering organoid vascularization..Front Bioeng Biotechnol2019;7:39 PMCID:PMC6433749

[76]

Sterlini B,Baldassari S,Zara F.Progress of induced pluripotent stem cell technologies to understand genetic epilepsy..Int J Mol Sci2020;21:482 PMCID:PMC7013950

[77]

Simonato M,Galanopoulou AS.Issues for new antiepilepsy drug development..Curr Opin Neurol2013;26:195-200 PMCID:PMC3770466

[78]

Zhang Y,Nikolaisen NK,Aldana BI.Patient iPSC-derived neurons for disease modeling of frontotemporal dementia with mutation in CHMP2B..Stem Cell Reports2017;8:648-58 PMCID:PMC5355623

[79]

Shi Y,Livesey FJ.Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks..Nat Protoc2012;7:1836-46

PDF

84

Accesses

0

Citation

Detail

Sections
Recommended

/