EHMT1 pathogenic variants and 9q34.3 microdeletions share altered DNA methylation patterns in patients with Kleefstra syndrome

Sarah J. Goodman , Cheryl Cytrynbaum , Brian Hon-Yin Chung , Eric Chater-Diehl , Celine Aziz , Andrei L. Turinsky , Barbara Kellam , Melanie Keller , Jung Min Ko , Oana Caluseriu , Daria Grafodatskaya , Elizabeth McCready , Renee Perrier , Kit San Yeung , Luk Ho-Ming , Jerry Machado , Michael Brudno , D. James Stavropoulos , Stephen W. Scherer , A. Micheil Innes , Sau Wei Cheung , Sanaa Choufani , Rosanna Weksberg

Journal of Translational Genetics and Genomics ›› 2020, Vol. 4 ›› Issue (3) : 144 -158.

PDF
Journal of Translational Genetics and Genomics ›› 2020, Vol. 4 ›› Issue (3) :144 -158. DOI: 10.20517/jtgg.2020.23
Original Article
review-article

EHMT1 pathogenic variants and 9q34.3 microdeletions share altered DNA methylation patterns in patients with Kleefstra syndrome

Author information +
History +
PDF

Abstract

Aim: Kleefstra syndrome (KS) is a rare neurodevelopmental disorder caused by haploinsufficiency of the euchromatic histone lysine methyltransferase 1 gene, EHMT1, due to either a submicroscopic 9q34.3 deletion or a pathogenic EHMT1 variant. KS is characterized by intellectual disability, autistic-like features, heart defects, hypotonia and distinctive facial features. Here, we aimed to (1) identify a unique DNA methylation signature in patients with KS, and (2) demonstrate the efficacy of DNA methylation in predicting the pathogenicity of copy number and sequence variants.

Methods: We assayed genome-wide DNA methylation at > 850,000 CpG sites in the blood of KS patients (n = 10) carrying pathogenic variants in EHMT1 or 9q34.3 deletions, as compared to neurotypical controls (n = 42). Differentially methylated sites were validated using additional KS patients (n = 10) and controls (n = 29) to assess specificity and sensitivity of these patterns.

Results: The DNA methylation signature of KS demonstrated high sensitivity and specificity; controls and KS patients with a confirmed molecular diagnosis were classified correctly. In additional individuals with EHMT1 alterations, including frameshift or missense variants and partial gene duplications, DNA methylation classifications were consistent with clinical presentation. Furthermore, genes containing differentially methylated CpG sites were enriched for functions related to KS features, including heart formation and synaptic activity.

Conclusion: The KS DNA methylation signature did not differ in patients with deletions and variants, supporting haploinsufficiency of EHMT1 as the likely causative mechanism. Beyond this finding, it provides new insights into epigenetic dysregulation associated with KS and can be used to classify individuals with uncertain genomic findings or ambiguous clinical presentations.

Keywords

EHMT1 / Kleefstra syndrome / DNA methylation / signature / epigenetics / copy number variation / neurodevelopmental disorder

Cite this article

Download citation ▾
Sarah J. Goodman, Cheryl Cytrynbaum, Brian Hon-Yin Chung, Eric Chater-Diehl, Celine Aziz, Andrei L. Turinsky, Barbara Kellam, Melanie Keller, Jung Min Ko, Oana Caluseriu, Daria Grafodatskaya, Elizabeth McCready, Renee Perrier, Kit San Yeung, Luk Ho-Ming, Jerry Machado, Michael Brudno, D. James Stavropoulos, Stephen W. Scherer, A. Micheil Innes, Sau Wei Cheung, Sanaa Choufani, Rosanna Weksberg. EHMT1 pathogenic variants and 9q34.3 microdeletions share altered DNA methylation patterns in patients with Kleefstra syndrome. Journal of Translational Genetics and Genomics, 2020, 4(3): 144-158 DOI:10.20517/jtgg.2020.23

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HoL.Chromatin remodelling during development..Nature2010;463:474-84 PMCID:PMC3060774

[2]

BjornssonHT.The Mendelian disorders of the epigenetic machinery..Genome Res2015;25:1473-81 PMCID:PMC4579332

[3]

SmithZD.DNA methylation: roles in mammalian development..Nat Rev Genet2013;14:204-20

[4]

MorganHD,GreenK,ReikW.Epigenetic reprogramming in mammals..Hum Mol Genet2005;14:R47-58

[5]

NumataS,HydeTM,TaoR.DNA methylation signatures in development and aging of the human prefrontal cortex..Am j hum genet2012;90:260-72 PMCID:PMC3276664

[6]

ColantuoniC,YeT,TaoR.Temporal dynamics and genetic control of transcription in the human prefrontal cortex..Nature2011;478:519-23 PMCID:PMC3510670

[7]

Tatton-BrownK,YostS,RamsayE.Mutations in epigenetic regulation genes are a major cause of overgrowth with intellectual disability..Am J Hum Genet2017;100:725-36 PMCID:PMC5420355

[8]

FahrnerJA.Mendelian disorders of the epigenetic machinery: postnatal malleability and therapeutic prospects..Hum Mol Genet2019;28:R254-64 PMCID:PMC6872430

[9]

CytrynbaumC,WeksbergR.Epigenetic signatures in overgrowth syndromes: Translational opportunities..Am J Med Genet A2019;181:491-501

[10]

ButcherDT,TurinskyAL,Inbar-FeigenbergM.CHARGE and kabuki syndromes: gene-specific DNA methylation signatures identify epigenetic mechanisms linking these clinically overlapping conditions..Am J Hum Genet2017;100:773-88 PMCID:PMC5420353

[11]

Chater-DiehlE,CytrynbaumC,TurinskyA.New insights into DNA methylation signatures: SMARCA2 variants in Nicolaides-Baraitser syndrome..BMC Med Genomics2019;12:105 PMCID:PMC6617651

[12]

IllingworthRS.CpG islands - ‘A rough guide’..FEBS Letters2009;583:1713-20

[13]

TorresIO.Functional coupling between writers, erasers and readers of histone and DNA methylation..Curr opin struct biol2015;35:68-75 PMCID:PMC4688207

[14]

FuksF.DNA methylation and histone modifications: teaming up to silence genes..Curr Opin Genet Dev2005;15:490-5

[15]

ChoufaniS,ChungBH,GrafodatskayaD.NSD1 mutations generate a genome-wide DNA methylation signature..Nat Commun2015;6:10207 PMCID:PMC4703864

[16]

Aref-EshghiE,HoodRL,CarereDA.BAFopathies’ DNA methylation epi-signatures demonstrate diagnostic utility and functional continuum of Coffin-Siris and Nicolaides-Baraitser syndromes..Nat Commun2018;9:4885 PMCID:PMC6244416

[17]

Aref-EshghiE,ColaiacovoS,ChakrabartiR.Diagnostic utility of genome-wide DNA methylation testing in genetically unsolved individuals with suspected hereditary conditions..Am J Hum Genet2019;104:685-700 PMCID:PMC6451739

[18]

KleefstraT.Disruption of the gene euchromatin histone methyl transferase1 (Eu-HMTase1) is associated with the 9q34 subtelomeric deletion syndrome..J Med Genet2005;42:299-306 PMCID:PMC1736026

[19]

KleefstraT,NillesenWM,HougeG.Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype..J Med Genet2009;46:598-606

[20]

PonténF,UhlenM.The Human Protein Atlas - a tool for pathology..J Pathol2008;216:387-93

[21]

YatsenkoSA,RoneyEK,ChinaultAC.Molecular mechanisms for subtelomeric rearrangements associated with the 9q34.3 microdeletion syndrome..Hum Mol Genet2009;18:1924-36 PMCID:PMC2678925

[22]

KleefstraT.AdamMP,PagonRA,BeanLJH,AmemiyaA.Kleefstra Syndrome..GeneReviews® [Internet].1993-2020;Seattle (WA)University of Washington, Seattle

[23]

Cormier-DaireV,RioM,de BloisMC.Cryptic terminal deletion of chromosome 9q34: a novel cause of syndromic obesity in childhood?.J Med Genet2003;40:300-3 PMCID:PMC1735435

[24]

StewartDR,FaravelliF,MedneL.Subtelomeric deletions of chromosome 9q: A novel microdeletion syndrome..Am J Med Genet A2004;128A:340-51

[25]

YatsenkoSA.Deletion 9q34.3 syndrome: genotype-phenotype correlations and an extended deletion in a patient with features of Opitz C trigonocephaly..J Med Genet2005;42:328-35 PMCID:PMC1736036

[26]

WillemsenMH,NillesenWM,van BokhovenH.Update on Kleefstra Syndrome..Mol Syndromol2012;2:202-12 PMCID:PMC3366700

[27]

Team RC. R: A language and environment for statistical computing. Vienna, Austria; 2013. Available from: https://www.R-project.org. [Last accessed on 25 May 2020]

[28]

ChenYA,ChoufaniS,GrafodatskayaD.Discovery of cross-reactive probes and polymorphic CpGs in the illumina infinium HumanMethylation450 microarray..Epigenetics2013;8:203-9 PMCID:PMC3592906

[29]

AryeeMJ,Corrada-BravoH,FeinbergAP.Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays..Bioinformatics2014;30:1363-9 PMCID:PMC4016708

[30]

HousemanEA,AccomandoWP,ChristensenBC.DNA methylation arrays as surrogate measures of cell mixture distribution..BMC bioinformatics2012;13:86 PMCID:PMC3532182

[31]

RitchieME,WuD,LawCW.limma powers differential expression analyses for RNA-sequencing and microarray studies..Nucleic Acids Res2015;43:e47 PMCID:PMC4402510

[32]

KuhnM.Building predictive models in R using the caret package..J Stat Softw2008;28:

[33]

AshburnerM,BlakeJA,ButlerH.Gene ontology: tool for the unification of biology..Nat Genet2000;25:25-9 PMCID:PMC3037419

[34]

LeeH,RimoinDL,KrejciP.Exome sequencing identifies PDE4D mutations in acrodysostosis..Am J Hum Genet2012;90:746-51 PMCID:PMC3322224

[35]

CampbellCL,ZarateYA.Severe neonatal presentation of Kleefstra syndrome in a patient with hypoplastic left heart syndrome and 9q34.3 microdeletion..Birth Defects Res A Clin Mol Teratol2014;100:985-90

[36]

YatsenkoSA,RoneyEK,SchaafCP.Human subtelomeric copy number gains suggest a DNA replication mechanism for formation: beyond breakage-fusion-bridge for telomere stabilization..Hum Genet2012;131:1895-910 PMCID:PMC3493700

[37]

SchwaiboldEMC,HobbiebrunkenE,ZollB.Intragenic duplication of EHMT1 gene results in Kleefstra syndrome..Mol Cytogenet2014;7:74 PMCID:PMC4209064

[38]

FerryL,TsusakaT,ShimazuT.Methylation of DNA ligase 1 by G9a/GLP recruits UHRF1 to replicating DNA and regulates DNA methylation..Mol Cell2017;67:550-65.e5

[39]

BostickM,EstevePO,PradhanS.UHRF1 plays a role in maintaining DNA methylation in mammalian cells..Science2007;317:1760-4

[40]

von MeyennF,HabibiE,Salehzadeh-YazdiA.Impairment of DNA methylation maintenance is the main cause of global demethylation in naive embryonic stem cells..Mol Cell2016;62:848-61 PMCID:PMC4914828

[41]

KrzyzewskaIM,HennemanP,VenemaA.A genome-wide DNA methylation signature for SETD1B-related syndrome..Clin epigenet2019;11:156-15 PMCID:PMC6830011

[42]

Aref-EshghiE,PedroVP,Ruiz-PallaresN.Evaluation of DNA methylation episignatures for diagnosis and phenotype correlations in 42 mendelian neurodevelopmental disorders..Am J Hum Genet2020;106:356-70 PMCID:PMC7058829

[43]

HayashiS.Emerging roles of protocadherins: from self-avoidance to enhancement of motility..J Cell Sci2015;128:1455-64

[44]

El HajjN,HaafT.Epigenetic dysregulation of protocadherins in human disease..Semin Cell Dev Biol2017;69:172-82

[45]

StrongE,SinghaniaR,MorrisCA.Symmetrical dose-dependent DNA-methylation profiles in children with deletion or duplication of 7q11.23..Am J Hum Genet2015;97:216-27 PMCID:PMC4573259

[46]

IaconoG,MezianeH,HabibiE.Increased H3K9 methylation and impaired expression of Protocadherins are associated with the cognitive dysfunctions of the Kleefstra syndrome..Nucleic Acids Res2018;46:4950-65 PMCID:PMC6007260

[47]

TachibanaM,FukudaM,ShinkaiY.G9a/GLP complexes independently mediate H3K9 and DNA methylation to silence transcription..EMBO J2008;27:2681-90 PMCID:PMC2572175

[48]

AlischRS,ChopraP,SattenGA.Age-associated DNA methylation in pediatric populations..Gen Res2012;22:623-32 PMCID:PMC3317145

[49]

YamadaA,ShinkaiY.Biochemical validation of EHMT1 missense mutations in Kleefstra syndrome..J Hum Genet2018;63:555-62

AI Summary AI Mindmap
PDF

49

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/