Intellectual disability, the long way from genes to biological mechanisms

Marcelo Marti , Maria Ines Perez Millan , Juan I. Young , Katherina Walz

Journal of Translational Genetics and Genomics ›› 2020, Vol. 4 ›› Issue (2) : 104 -113.

PDF
Journal of Translational Genetics and Genomics ›› 2020, Vol. 4 ›› Issue (2) :104 -113. DOI: 10.20517/jtgg.2020.10
Opinion
review-article

Intellectual disability, the long way from genes to biological mechanisms

Author information +
History +
PDF

Abstract

Approximately 2% of the world population is affected by intellectual disability (ID). Huge efforts in sequencing and analysis of individual human genomes have identified several genes and genetic/genomic variants associated with ID. Despite all this knowledge, the relationship between genes, pathophysiology and molecular mechanisms of ID remain highly complex. We summarize the genomic advances related to ID, provide examples on how to discern correlative versus causative roles in genetic variation, understand the physiological consequences of identified variants, and discuss future challenges.

Keywords

Intellectual disability / genetics / diagnosis / biological mechanisms

Cite this article

Download citation ▾
Marcelo Marti, Maria Ines Perez Millan, Juan I. Young, Katherina Walz. Intellectual disability, the long way from genes to biological mechanisms. Journal of Translational Genetics and Genomics, 2020, 4(2): 104-113 DOI:10.20517/jtgg.2020.10

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DearyIJ,HoulihanLM.Genetic foundations of human intelligence..Hum Genet2009;126:215-32

[2]

DaviesG,PaytonA,HarrisSE.Genome-wide association studies establish that human intelligence is highly heritable and polygenic..Mol Psychiatry2011;16:996-1005 PMCID:PMC3182557

[3]

SebatJ,MalhotraD,Lese-MartinC.Strong association of de novo copy number mutations with autism..Science2007;316:445-9 PMCID:PMC2993504

[4]

Gonzalez-MantillaAJ,LedbetterDH.A cross-disorder method to identify novel candidate genes for developmental brain disorders..JAMA Psychiatry2016;73:275-83 PMCID:PMC5333489

[5]

TasseMJ,SchalockRL.The relation between intellectual functioning and adaptive behavior in the diagnosis of intellectual disability..Intellect Dev Disabil2016;54:381-90

[6]

DalsgaardS,TrabjergBB,Plana-RipollO.Incidence rates and cumulative incidences of the full spectrum of diagnosed mental disorders in childhood and adolescence..JAMA Psychiatry2019;77:155-64

[7]

BoyleCA,SchieveLA,BlumbergSJ.Trends in the prevalence of developmental disabilities in US children, 1997-2008..Pediatrics2011;127:1034-42

[8]

Van NaardenBraun K,DoernbergN,RiceC.Trends in the prevalence of autism spectrum disorder, cerebral palsy, hearing loss, intellectual disability, and vision impairment, metropolitan atlanta, 1991-2010..PLoS One2015;10:e0124120 PMCID:PMC4414511

[9]

WillemsenMH.Genetic diagnostics in intellectual disability: what is the benefit?.Ned Tijdschr Geneeskd2014;158:A8098

[10]

BlessonA.Genetic counseling in neurodevelopmental disorders..Cold Spring Harb Perspect Med2020;10:a036533

[11]

PosthumaD.What have we learned from recent twin studies about the etiology of neurodevelopmental disorders?.Curr Opin Neurol2013;26:111-21

[12]

ShendureJ,SnyderMW.Genomic medicine-progress, pitfalls, and promise..Cell2019;177:45-57 PMCID:PMC6531313

[13]

CoulterME,HarrisDJ,PickerJ.Chromosomal microarray testing influences medical management..Genet Med2011;13:770-6

[14]

IossifovI,SandersSJ,KrummN.The contribution of de novo coding mutations to autism spectrum disorder..Nature2014;515:216-21 PMCID:PMC4313871

[15]

MillerDT,AradhyaS,BrothmanAR.Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies..Am J Hum Genet2010;86:749-64 PMCID:PMC2869000

[16]

de LigtJ,van BonBW,YntemaHG.Diagnostic exome sequencing in persons with severe intellectual disability..N Engl J Med2012;367:1921-9

[17]

GilissenC,ThungDT,van BonBW.Genome sequencing identifies major causes of severe intellectual disability..Nature2014;511:344-7

[18]

LeeH,DorraniN,KantarciS.Clinical exome sequencing for genetic identification of rare Mendelian disorders..JAMA2014;312:1880-7 PMCID:PMC4278636

[19]

StessmanHA,CoeBP,HoekzemaK.Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases..Nat Genet2017;49:515-26 PMCID:PMC5374041

[20]

JiangYH,JinX,ChenN.Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing..Am J Hum Genet2013;93:249-63 PMCID:PMC3738824

[21]

Johns Hopkins University. OMIM® - Online Mendelian Inheritance in Man®. Available from: https://www.omim.org/search/?index=entry&search=intellectual+disability&sort=chromosome_number+asc%2C+chromosome_sort+asc&start=1&limit=100&retrieve=geneMap&gm_exists=true [Last accessed on 17 Apr 2020].

[22]

KochinkeK,NijhofB,CizekP.Systematic phenomics analysis deconvolutes genes mutated in intellectual disability into biologically coherent modules..Am J Hum Genet2016;98:149-64 PMCID:PMC4716705

[23]

RichardsS,BaleS,DasS.Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology..Genet Med2015;17:405-24 PMCID:PMC4544753

[24]

ChenC,XueH,ZhangT.IDGenetics: a comprehensive database for genes and mutations of intellectual disability related disorders..Neurosci Lett2018;685:96-101

[25]

MorrowEM.Genomic copy number variation in disorders of cognitive development..J Am Acad Child Adolesc Psychiatry2010;49:1091-104 PMCID:PMC3137887

[26]

WalzK.Cellular and animal models in human genomics research. Translational and applied genomics series.2019;San DiegoElsevier/Academic Press1-226

[27]

VeyG.Metagenomic guilt by association: an operonic perspective..PLoS One2013;8:e71484 PMCID:PMC3735515

[28]

VermaV,AmrapaliVishwanath A,ClementJP.Understanding intellectual disability and autism spectrum disorders from common mouse models: synapses to behaviour..Open Biol2019;9:180265 PMCID:PMC6597757

[29]

CanalesCP.WalzK.The mouse, a model organism for biomedical research..Cellular and animal models in human genomics research. Translational and Applied Genomics Series.2019;San DiegoElsevier/Academic Press119-40

[30]

GiaeverG,NiL,RilesL.Functional profiling of the Saccharomyces cerevisiae genome..Nature2002;418:387-91

[31]

KimDU,KimD,ParkHO.Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe..Nat Biotechnol2010;28:617-23 PMCID:PMC3962850

[32]

BabaT,HasegawaM,OkumuraY.Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection..Mol Syst Biol2006;2:2006.0008 PMCID:PMC1681482

[33]

KamathRS,DongY,DurbinR.Systematic functional analysis of the Caenorhabditis elegans genome using RNAi..Nature2003;421:231-7

[34]

DietzlG,SchnorrerF,BarinovaY.A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila..Nature2007;448:151-6

[35]

LepantoP,BadanoJL.WalzK.Studying human genetic variation in zebrafish..Cellular and animal models in human genomics research. Translational and Applied Genomics Series. In: Anonymous2019;San DiegoElsevier/Academic Press89-117

[36]

RiceAM.Dosage sensitivity is a major determinant of human copy number variant pathogenicity..Nat Commun2017;8:14366 PMCID:PMC5309798

[37]

BiW,StankiewiczP,WalzK.Genes in a refined Smith-Magenis syndrome critical deletion interval on chromosome 17p11.2 and the syntenic region of the mouse..Genome Res2002;12:713-28 PMCID:PMC186594

[38]

Ramirez-SolisR,BradleyA.Chromosome engineering in mice..Nature1995;378:720-4

[39]

ZhengB,BradleyA.A system for rapid generation of coat color-tagged knockouts and defined chromosomal rearrangements in mice..Nucleic Acids Res1999;27:2354-60 PMCID:PMC148802

[40]

WalzK,BiW,MansouriDL.Modeling del(17)(p11.2p11.2) and dup(17)(p11.2p11.2) contiguous gene syndromes by chromosome engineering in mice: phenotypic consequences of gene dosage imbalance..Mol Cell Biol2003;23:3646-55 PMCID:PMC154242

[41]

BiW,NakamuraH,VisvanathanJ.Inactivation of Rai1 in mice recapitulates phenotypes observed in chromosome engineered mouse models for Smith-Magenis syndrome..Hum Mol Genet2005;14:983-95

[42]

WalzK,YanJ,LupskiJR.Rai1 duplication causes physical and behavioral phenotypes in a mouse model of dup(17) (p11.2p11.2)..J Clin Invest2006;116:3035-41 PMCID:PMC1590269

[43]

RicardG,ChrastJ,GheldofN.Phenotypic consequences of copy number variation: insights from Smith-Magenis and Potocki-Lupski syndrome mouse models..PLoS Biol2010;8:e1000543 PMCID:PMC2990707

[44]

BirlingMC,AndreP,MarechalD.Efficient and rapid generation of large genomic variants in rats and mice using CRISMERE..Sci Rep2017;7:43331 PMCID:PMC5339700

[45]

BirlingMC,PavlovicG.Modeling human disease in rodents by CRISPR/Cas9 genome editing..Mamm Genome2017;28:291-301 PMCID:PMC5569124

[46]

IshibashiM,ShoubridgeC,HawkinsTA.Copy number variants in patients with intellectual disability affect the regulation of ARX transcription factor gene..Hum Genet2015;134:1163-82

[47]

BorrieSC,LegiusE.Cognitive dysfunctions in intellectual disabilities: the contributions of the ras-MAPK and PI3K-AKT-mTOR pathways..Annu Rev Genomics Hum Genet2017;18:115-42

[48]

SchubbertS,ShannonK.Deregulated Ras signaling in developmental disorders: new tricks for an old dog..Curr Opin Genet Dev2007;17:15-22

[49]

WangL,FuZ,HuangH.Brain development and akt signaling: the crossroads of signaling pathway and neurodevelopmental diseases..J Mol Neurosci2017;61:379-84 PMCID:PMC5344939

[50]

DobynsWB.Megalencephaly syndromes associated with mutations of core components of the PI3K-AKT-MTOR pathway: PIK3CA, PIK3R2, AKT3, and MTOR..Am J Med Genet C Semin Med Genet2019;181:582-90

[51]

BaW,NadifKasri N.Rho GTPase signaling at the synapse: implications for intellectual disability..Exp Cell Res2013;319:2368-74

[52]

ChiaPH,NiwaS,UtamiKH.A homozygous loss-of-function CAMK2A mutation causes growth delay, frequent seizures and severe intellectual disability..Elife2018;7:e32451 PMCID:PMC5963920

[53]

AgarwalM,StafstromCE.SYNGAP1 mutations: clinical, genetic, and pathophysiological features..Int J Dev Neurosci2019;78:65-76

[54]

ChenES,RosenfeldJA,MaussionG.Molecular convergence of neurodevelopmental disorders..Am J Hum Genet2014;95:490-508 PMCID:PMC4225591

[55]

GandalMJ,ParikshakNN,RamaswamiG.Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap..Science2018;359:693-7 PMCID:PMC5898828

[56]

VoineaguI,JohnstonP,TianY.Transcriptomic analysis of autistic brain reveals convergent molecular pathology..Nature2011;474:380-4 PMCID:PMC3607626

[57]

FregaM,MossinkB,LindaK.Distinct pathogenic genes causing intellectual disability and autism exhibit a common neuronal network hyperactivity phenotype..Cell Rep2020;30:173-86.e6

[58]

GallegosDA,ChenLF.Chromatin regulation of neuronal maturation and plasticity..Trends Neurosci2018;41:311-24 PMCID:PMC5924605

[59]

KeilKP.DNA methylation: a mechanism linking environmental chemical exposures to risk of autism spectrum disorders?.Environ Epigenet2016;2:dvv01210 PMCID:PMC4856164

[60]

BarbosaM,GargP,PatelN.Identification of rare de novo epigenetic variations in congenital disorders..Nat Commun2018;9:2064 PMCID:PMC5970273

[61]

Aref-EshghiE,ColaiacovoS,ChakrabartiR.Diagnostic utility of genome-wide DNA methylation testing in genetically unsolved individuals with suspected hereditary conditions..Am J Hum Genet2019;104:685-700 PMCID:PMC6451739

[62]

KleefstraT,KramerJM.The genetics of cognitive epigenetics..Neuropharmacology2014;80:83-94

[63]

BjornssonHT.The mendelian disorders of the epigenetic machinery..Genome Res2015;25:1473-81 PMCID:PMC4579332

[64]

GabrieleM,D’AgostinoG.The chromatin basis of neurodevelopmental disorders: Rethinking dysfunction along the molecular and temporal axes..Prog Neuropsychopharmacol Biol Psychiatry2018;84:306-27

[65]

FahrnerJA.Mendelian disorders of the epigenetic machinery: postnatal malleability and therapeutic prospects..Hum Mol Genet2019;28:R254-64 PMCID:PMC6872430

[66]

Tatton-BrownK,RuarkE,RamsayE.Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability..Nat Genet2014;46:385-8 PMCID:PMC3981653

[67]

Tatton-BrownK,YostS,RamsayE.Mutations in epigenetic regulation genes are a major cause of overgrowth with intellectual disability..Am J Hum Genet2017;100:725-36 PMCID:PMC5420355

[68]

UddinM,Woodbury-SmithM.Artificial intelligence for precision medicine in neurodevelopmental disorders..NPJ Digit Med2019;2:112 PMCID:PMC6872596

[69]

TorkamaniA,TopolEJ.The personal and clinical utility of polygenic risk scores..Nat Rev Genet2018;19:581-90

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/