Intellectual disability, the long way from genes to biological mechanisms
Marcelo Marti , Maria Ines Perez Millan , Juan I. Young , Katherina Walz
Journal of Translational Genetics and Genomics ›› 2020, Vol. 4 ›› Issue (2) : 104 -113.
Intellectual disability, the long way from genes to biological mechanisms
Approximately 2% of the world population is affected by intellectual disability (ID). Huge efforts in sequencing and analysis of individual human genomes have identified several genes and genetic/genomic variants associated with ID. Despite all this knowledge, the relationship between genes, pathophysiology and molecular mechanisms of ID remain highly complex. We summarize the genomic advances related to ID, provide examples on how to discern correlative versus causative roles in genetic variation, understand the physiological consequences of identified variants, and discuss future challenges.
Intellectual disability / genetics / diagnosis / biological mechanisms
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
Johns Hopkins University. OMIM® - Online Mendelian Inheritance in Man®. Available from: https://www.omim.org/search/?index=entry&search=intellectual+disability&sort=chromosome_number+asc%2C+chromosome_sort+asc&start=1&limit=100&retrieve=geneMap&gm_exists=true [Last accessed on 17 Apr 2020]. |
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
/
| 〈 |
|
〉 |