Clinical and therapeutic implications of melanoma genomics

Michael Shaughnessy , Nikolai Klebanov , Hensin Tsao

Journal of Translational Genetics and Genomics ›› : 14

PDF
Journal of Translational Genetics and Genomics ›› :14 DOI: 10.20517/jtgg.2018.25
Review
review-article

Clinical and therapeutic implications of melanoma genomics

Author information +
History +
PDF

Abstract

Melanoma represents just 1% of skin cancer but is responsible for the vast majority of skin cancer deaths. Given its implications for therapeutic advancement, the field of melanoma genomics has dramatically expanded in recent years. At one time classified mainly by anatomical location - non-acral cutaneous melanoma (NACM), acral cutaneous melanoma (ACM), mucosal melanoma (MuM), or uveal melanoma (UM) are now further sub-classified based on the mutated genes that drive their initiation, progression, and survival. BRAF gene mutations in NACM are the most frequently occurring and the best-studied, giving rise to the successful use of BRAF inhibitors in clinical practice for the last decade. This development has opened the door for many promising clinical trials and countless investigations into melanoma’s genetic underpinnings. In this review, we offer an overview of melanoma genomics and discuss the most relevant somatic mutations such as BRAF, NRAS, and NF1 in NACM, KIT in ACM and MuM, and GNAQ, GNA11, and BAP1 in UM. Particular emphasis is placed on the biochemical pathways driven by each mutation, their associated clinical manifestations, and their role as current and future therapeutic targets.

Keywords

Melanoma / cutaneous melanoma / genetics / genomics / BRAF / NRAS / NF1 / skin cancer

Cite this article

Download citation ▾
Michael Shaughnessy, Nikolai Klebanov, Hensin Tsao. Clinical and therapeutic implications of melanoma genomics. Journal of Translational Genetics and Genomics 14 DOI:10.20517/jtgg.2018.25

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SiegelRL,JemalA.Cancer statistics, 2018.CA Cancer J Clin2018;68:7-30

[2]

JemalA,WardE,XuJ,ThunMJ.Cancer statistics, 2008.CA Cancer J Clin2008;58:71-96

[3]

ChapmanPB,RobertC,AsciertoP,DummerR,TestoriA,HoggD,LebbeC,SchadendorfD,O'DaySJ,KirkwoodJM,DrenoB,LiJ,HouJ,FlahertyKT.Improved survival with vemurafenib in melanoma with BRAF V600E mutation.N Engl J Med2011;364:2507-16 PMCID:PMC3549296

[4]

FlahertyKT,KimKB,McArthurGA,O'DwyerPJ,GrippoJF,ChapmanPB.Inhibition of mutated, activated BRAF in metastatic melanoma.N Engl J Med2010;363:809-19 PMCID:PMC3724529

[5]

RansohoffKJ,TangJY,LeachmanS.Familial skin cancer syndromes: increased melanoma risk.J Am Acad Dermatol2016;74:423-34

[6]

NetworkCancer Genome Atlas.Genomic classification of cutaneous melanoma.Cell2015;161:1681-96 PMCID:PMC4580370

[7]

SchadendorfD,GarbeC,GrobJJ,HerlynM,McArthurG,RoeschA.Melanoma.Nat Rev Dis Primers2015;1:15003

[8]

BaileyEC,TsaoH,JohnsonJrTM.Cutaneous melanoma.In: Fitzpatrick's dermatology in general medicine, 8e. New York: McGraw-Hill Global Education Holdings, LLC.; 2012

[9]

RabbieR.Desmoplastic melanoma: C > Ts and NF-κB.Pigment Cell Melanoma Res2015;29:120-1 PMCID:PMC4864442

[10]

JohnsonDB.Treatment of NRAS-mutant melanoma.Curr Treat Options Oncol2015;16:15 PMCID:PMC4830486

[11]

PollockPM,HansenKS,StarkM,MosesTY,WagnerU,SalemG,HeenanP,KallioniemiO,TrentJM.High frequency of BRAF mutations in nevi.Nat Genet2003;33:19-20

[12]

FlahertyKT,DaudA,KeffordRF,HamidO,CebonJ,KudchadkarR,FalchookG,LewisK,PuzanovI,SinghA,SunP,OuelletD,PatelK.Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations.N Engl J Med2012;367:1694-703 PMCID:PMC3549295

[13]

LiuL,EastmanS,YadavilliS,YangJ,ZhangSY,TsvetkovL,ZhangS,HoosA.The BRAF and MEK inhibitors dabrafenib and trametinib: effects on immune function and in combination with immunomodulatory antibodies targeting PD-1, PD-L1, and CTLA-4.Clin Cancer Res2015;

[14]

EllerhorstJA,EkmekciogluS,JohnsonMM,WangLE,GershenwaldJE,GrimmEA.Clinical correlates of NRAS and BRAF mutations in primary human melanoma.Clin Cancer Res2011;17:229-35 PMCID:PMC3022950

[15]

BauerJ,PinkelD.Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations.J Invest Dermatol2007;127:179-82

[16]

ManzanoJL,BugésC,VilaL,Martínez-CardúsA.Resistant mechanisms to BRAF inhibitors in melanoma.Ann Transl Med2016;4:237 PMCID:PMC4930524

[17]

AsciertoPA,BerkingC,van HerpenCM,BlankCU,BeckJT,NiaziF,PetersM,DummerR.MEK162 for patients with advanced melanoma harbouring NRAS or Val600 BRAF mutations: a non-randomised, open-label phase 2 study.Lancet Oncol2013;14:249-56

[18]

SosmanJA,LolkemaMP,SchwartzG,MatanoA,ParasuramanS.A phase 1b/2 study of LEE011 in combination with binimetinib (MEK162) in patients with NRAS-mutant melanoma: early encouraging clinical activity.J Clin Oncol2014;32:9009

[19]

KrauthammerM,BacchiocchiA,PornputtapongN,McCuskerJP,ChengE,SerinM,AriyanS,SznolM,ManeS,LiftonRP.Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas.Nat Genet2015;47:996-1002 PMCID:PMC4916843

[20]

CirenajwisH,EkedahlH,KvistA,OlssonH,CarneiroA,HarbstK,JönssonG.NF1-mutated melanoma tumors harbor distinct clinical and biological characteristics.Mol Oncol2017;11:438-51 PMCID:PMC5527484

[21]

CurtinJA,PinkelD.Somatic activation of KIT in distinct subtypes of melanoma.J Clin Oncol2006;24:4340-6

[22]

NataliPG,WinklerAB,BigottiA.Progression of human cutaneous melanoma is associated with loss of expression of c-kit proto-oncogene receptor.Int J Cancer1992;52:197-201

[23]

ReddyBY,TsaoH.Somatic driver mutations in melanoma.Cancer2017;123:2104-17

[24]

MerkelEA.Malignant melanoma of sun-protected sites: a review of clinical, histological, and molecular features.Lab Invest2017;97:630-5

[25]

DaiJ,SiL,CuiC,MaoL,LianB,LiuS,GuoJ.Large-scale analysis of PDGFRA mutations in melanomas and evaluation of their sensitivity to tyrosine kinase inhibitors imatinib and crenolanib.Clin Cancer Res2013;19:6935-42

[26]

SauterER,von StemmA,LitwinS,PistrittoG,PinkelD,BastianBC.Cyclin D1 is a candidate oncogene in cutaneous melanoma.Cancer Res2002;62:3200-6

[27]

FlørenesVA,MaelandsmoGM,HolmR.Levels of cyclin D1 and D3 in malignant melanoma: deregulated cyclin D3 expression is associated with poor clinical outcome in superficial melanoma.Clin Cancer Res2000;6:3614-20

[28]

ObaJ,AbeT,MoroiY.Expression of c-Kit, p-ERK and cyclin D1 in malignant melanoma: an immunohistochemical study and analysis of prognostic value.J Dermatol Sci2011;62:116-23

[29]

US National Library of Medicine. A trial of niraparib in BAP1 and other DNA damage response (DDR) deficient neoplasms (UF-STO-ETI-001). Available from: https://clinicaltrials.gov/ct2/show/NCT03207347. [Last accessed on 19 Sept 2018]

[30]

FieldMG,AnbunathanH,DecaturCL,KurtenbachS.Punctuated evolution of canonical genomic aberrations in uveal melanoma.Nat Commun2018;9:116 PMCID:PMC5760704

[31]

ShoushtariAN.GNAQ and GNA11 mutations in uveal melanoma.Melanoma Res2014;24:525-34

[32]

ShtivelmanE,HwuP,LotemM,FlahertyKT.Pathways and therapeutic targets in melanoma.Oncotarget2014;5:1701-52

[33]

CarvajalRD,QuevedoJF,JoshuaAM,LinetteGP,LutzkyJ,LaoCD,AlbertiniMR,LewisK,AncellK,BluthM,ErinjeriJ,MarrB,DicksonMA,ChapmanPB.Effect of selumetinib vs chemotherapy on progression-free survival in uveal melanoma: a randomized clinical trial.JAMA2014;311:2397-405 PMCID:PMC4249701

[34]

DohertyRE,FrancisJ,SisleyK.Genetics of uveal melanoma..In: Scott JF, Gerstenblith MR, editors. Noncutaneous melanoma [Internet].2018;Brisbane (AU)Codon Publications19-36

[35]

US National Library of Medicine. A trial of niraparib in BAP1 and other DNA damage response (DDR) deficient neoplasms (UF-STO-ETI-001). Available from: https://clinicaltrials.gov/ct2/show/NCT03207347. [Last accessed on 19 Sept 2018]

[36]

DaviesH,CoxC,EdkinsS,TeagueJ,GarnettMJ,DavisN,EwingR,GrayK,HawesR,KosmidouV,MouldC,StevensC,HooperS,JayatilakeH,CooperC,HargraveD,MaitlandN,RigginsGJ,PalmieriG,FlanaganA,HoJW,YuenST,SeiglerHF,PatersonH,MarshallCJ,StrattonMR.Mutations of the BRAF gene in human cancer.Nature2002;417:949-54

[37]

SosmanJA,SchuchterL,PavlickAC,McArthurGA,MoschosSJ,HerseyP,LawrenceD,LewisKD,ChmielowskiB,ShyrY,LiJ,LeeRJ,RibasA.Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib.N Engl J Med2012;366:707-14 PMCID:PMC3724515

[38]

WagleN,BergerMF,SawyerA,KehoeSM,MacconaillLE,MeyersonM.Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling.J Clin Oncol2011;29:3085-96 PMCID:PMC3157968

[39]

HawrylukEB.Melanoma: clinical features and genomic insights.Cold Spring Harb Perspect Med2014;4:a015388 PMCID:PMC4143108

[40]

Mu-oz-CouseloE,OrtizC,Perez-GarciaJ.NRAS-mutant melanoma: current challenges and future prospect.Onco Targets Ther2017;10:3941-7 PMCID:PMC5558581

[41]

RaaijmakersMI,NarechaniaA,FreibergerSN,ChengPF,DesalleR,LevesqueMP.Co-existence of BRAF and NRAS driver mutations in the same melanoma cells results in heterogeneity of targeted therapy resistance.Oncotarget2016;7:77163-74 PMCID:PMC5363577

[42]

ArsE,MorellM,SerraE,EstivillX.Recurrent mutations in the NF1 gene are common among neurofibromatosis type 1 patients.J Med Genet2003;40:e82 PMCID:PMC1735494

[43]

WhittakerSR,Van AllenE,HsiaoJ,SchadendorfD,GarrawayLA.A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition.Cancer discov2013;3:350-62 PMCID:PMC3606893

[44]

ShainAH,BottonT,YehI,ChungJ,KakavandH,ThompsonJF,RoyR,GagnonA,HuhN,BusamKJ,ChoRJ,BastianBC.Exome sequencing of desmoplastic melanoma identifies recurrent NFKBIE promoter mutations and diverse activating mutations in the MAPK pathway.Nat Genet2015;47:1194-9 PMCID:PMC4589486

[45]

KadokuraA,LeoneDA,HoangMP,Hernandez-PerezM,SinghR,MahalingamM.Neurofibromin protein loss in desmoplastic melanoma subtypes: implicating NF1 allelic loss as a distinct genetic driver?.Hum Pathol2016;53:82-90

[46]

HaywardNK,WaddellN,FieldMA,PatchAM,AlexandrovLB,JakrotV,HolmesO,SabarinathanR,WoodS,WaddellN,PupoGM,VilainRE,LauLMS,SchrammSJ,Dutton-RegesterK,FitzgeraldA,GrimmondSM,YangJY,BehrenA,HerseyP,CebonJ,SpillaneAJ,López-BigasN,ThompsonJF,MannGJ.Whole-genome landscapes of major melanoma subtypes.Nature2017;545:175-80

[47]

WellbrockC.Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy.Pigment Cell Melanoma Res2015;28:390-406 PMCID:PMC4692100

[48]

GarrawayLA,RubinMA,BergerAJ,BeroukhimR,GranterSR,LeeC,LiC,RimmDL,FisherDE.Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma.Nature2005;436:117-22

[49]

BirckA,ZeuthenJ,GuldbergP.Mutation and allelic loss of the PTEN/MMAC1 gene in primary and metastatic melanoma biopsies.J Invest Dermatol2000;114:277-80

[50]

ShainAH,KovalyshynI,TalevichE,DummerR,PincusL,RickabyW,RobsonA.The genetic evolution of melanoma from precursor lesions.N Engl J Med2015;373:1926-36

[51]

ChibaK,ShainAH,SchrufE,RyuJ,BastianBC.Mutations in the promoter of the telomerase gene TERT contribute to tumorigenesis by a two-step mechanism.Science2017;357:1416-20 PMCID:PMC5942222

[52]

BellRJ,KreigA,FouseSD,ChoiS,HeD,WienckeJK,ChangSM,MyongS,CostelloJF.Cancer.The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science2015;348:1036-9 PMCID:PMC4456397

[53]

SpencerKR.Mucosal melanoma: epidemiology, biology and treatment.Cancer Treat Res2016;167:295-320

[54]

Vazquez VdeL,CarloniA,SoaresP,MartinhoO.Molecular profiling, including TERT promoter mutations, of acral lentiginous melanomas.Melanoma Res2016;26:93-9

[55]

KimJY,JoSJ,ChoKH.Acral lentiginous melanoma: indolent subtype with long radial growth phase.Am J Dermatopathol2014;36:142-7

[56]

DominiakNR,SmithMT.Mucosal melanomas: site-specific information, comparisons with cutaneous tumors, and differential diagnosis.Semin Diagn Pathol2016;33:191-7

[57]

FurneySJ,FenwickK,MacKayA,MitsopoulosC,HakasJ,LordCJ,Reis-FilhoJS,MurataH.Genomic characterisation of acral melanoma cell lines.Pigment Cell Melanoma Res2012;25:488-92

[58]

HarbourJW,AnbunathanH,WorleyLA.Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma.Nat Genet2013;45:133-5 PMCID:PMC3789378

[59]

Van RaamsdonkCD,GreenG,GauglerL,SimpsonEM,BastianBC.Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi.Nature2009;457:599-602 PMCID:PMC2696133

[60]

CarvajalRD,WolchokJD,RomanRA,PanageasKS,ChmielowskiB,PavlickAC,CaneL,VemulaS,BastianBC.KIT as a therapeutic target in metastatic melanoma.JAMA2011;305:2327-34 PMCID:PMC3986039

[61]

SmalleyKS,Dalla PalmaM,DesaiB,HanssonJ,KingAJ,ElderDE,HerlynM.Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E-mutated melanomas.Mol Cancer Ther2008;7:2876-83 PMCID:PMC2651569

[62]

KrantzBA,KomatsubaraKM,CarvajalRD.Uveal melanoma: epidemiology, etiology, and treatment of primary disease.Clin Ophthalmol2017;11:279-89 PMCID:PMC5298817

[63]

JovanovicP,Djordjevic-JocicJ,CekicS.Ocular melanoma: an overview of the current status.Int J Clin Exp Pathol2013;6:1230-44 PMCID:PMC3693189

[64]

SinghAD,TophamAK.Uveal melanoma: trends in incidence, treatment, and survival.Ophthalmology2011;118:1881-5

[65]

ChenX,DepeilleP,ThorntonS,CouplandSE,BastianBC.RasGRP3 mediates MAPK pathway activation in GNAQ mutant uveal melanoma.Cancer Cell2017;31:685-96 PMCID:PMC5499527

[66]

HelgadottirH.The genetics of uveal melanoma: current insights.Appl Clin Genet2016;9:147-55 PMCID:PMC5019476

[67]

Van RaamsdonkCD,CrosbyMB,VemulaS,ObenaufAC,GreenG,SozenMM,RoyR,DolgalevI,BusamK,O'BrienJ.Mutations in GNA11 in uveal melanoma.N Engl J Med2010;363:2191-9 PMCID:PMC3107972

[68]

ScheuermannJC,OktabaK,McGintyRK,WilmM,MüllerJ.Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB.Nature2010;465:243-7 PMCID:PMC3182123

[69]

GuptaMP,DeAngelisMM,CrabtreeM,KimIK.Clinical characteristics of uveal melanoma in patients with germline BAP1 mutations.JAMA Ophthalmol2015;133:881-7

[70]

FurneySJ,StampG,HayesA,GavrielidesM,GoreM,MaraisR.The mutational burden of acral melanoma revealed by whole-genome sequencing and comparative analysis.Pigment Cell Melanoma Res2014;27:835-8

[71]

KrauthammerM,HaBH,BacchiocchiA,ChengE,GohG,AriyanS,Dutton-RegesterK,HolmanEC,SznolM,BrashDE,MaterinMA,ManeS,KiddKK,LiftonRP,BoggonTJ.Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma.Nat Genet2012;44:1006-14 PMCID:PMC3432702

[72]

ChalmersZR,FabrizioD,AliSM,SchrockA,ShlienA,HuangF,SunJ,KennedyM,RoelsS,OttoGA,GarrawayL,StephensPJ.Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden.Genome Med2017;9:34 PMCID:PMC5395719

[73]

GuptaS,GogginsW,TsaoH.Gender disparity and mutation burden in metastatic melanoma..J Natl Cancer Inst2015;

[74]

SnyderA,MerghoubT,ZaretskyJM,WalshLA,WongP,HollmannTJ,KannanK,ElipenahliC,HarbisonCT,RibasA,ChanTA.Genetic basis for clinical response to CTLA-4 blockade in melanoma.N Engl J Med2014;371:2189-99 PMCID:PMC4315319

[75]

LuYC.Cancer immunotherapy targeting neoantigens.Semin Immunol2016;28:22-7 PMCID:PMC4862880

[76]

AlexandrovLB,WedgeDC,BehjatiS,BignellGR,BorgA,BoyaultS,ButlerAP,DaviesHR,EilsR,FoekensJA,HosodaF,IlicicT,ImielinskiM,JonesDT,KnappskogS,LakhaniSR,MartinS,NakamuraH,PajicM,ParadisoA,PuenteXS,RamakrishnaM,RichterJ,SchlesnerM,SpanPN,TotokiY,Valdés-MasR,van ‘t VeerL,WaddellN,Zucman-RossiJ,McDermottU,MeyersonM,SiebertR,ShibataT,CampbellPJ.Signatures of mutational processes in human cancer.Nature2013;500:415-21 PMCID:PMC3776390

[77]

AlexandrovLB.Mutational signatures: the patterns of somatic mutations hidden in cancer genomes.Curr Opin Genet Dev2014;24:52-60 PMCID:PMC3990474

[78]

FreemanJL,FeukL,McCarrollSA,AburataniH,Tyler-SmithC,CarterNP,LeeC.Copy number variation: new insights in genome diversity.Genome Res2006;16:949-61

[79]

ConradDF,RedonR,GokcumenO,AertsJ,BarnesC,FitzgeraldT,IhmCH,MacarthurDG,OnyiahI,RobsonS,ValsesiaA,WeiJ; Wellcome Trust Case Control Consortium,CarterNP,SchererSW.Origins and functional impact of copy number variation in the human genome.Nature2010;464:704-12 PMCID:PMC3330748

[80]

CurtinJA,KageshitaT,BusamKJ,ChoKH,BröckerEB,PinkelD.Distinct sets of genetic alterations in melanoma.N Engl J Med2005;353:2135-47

[81]

MerkelEA.Malignant melanoma of sun-protected sites: a review of clinical, histological, and molecular features.Lab Invest2017;97:630-5

[82]

CurtinJA,PinkelD.Somatic activation of KIT in distinct subtypes of melanoma.J Clin Oncol2006;24:4340-6

[83]

WangZ,SnyderM.RNA-Seq: a revolutionary tool for transcriptomics.Nat Rev Genet2009;10:57-63 PMCID:PMC2949280

[84]

JönssonG,KnappskogS,MileticH,LillehaugJR,LønningPE.Gene expression profiling-based identification of molecular subtypes in stage IV melanomas with different clinical outcome.Clin Cancer Res2010;16:3356-67

[85]

HarbstK,LaussM,MåsbäckA,BendahlPO,TörngrenT,GeislerJ,RingnérM,JirströmK,IngvarC,TsaoH.Molecular profiling reveals low- and high-grade forms of primary melanoma.Clin Cancer Res2012;18:4026-36 PMCID:PMC3467105

[86]

AzimiF,RumchevaP,MuraliR,SawRP.Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma.J Clin Oncol2012;30:2678-83

[87]

OnkenMD,EhlersJP.Gene expression profiling in uveal melanoma reveals two molecular classes and predicts metastatic death.Cancer Res2004;64:7205-9 PMCID:PMC5407684

[88]

FieldMG.Recent developments in prognostic and predictive testing in uveal melanoma.Curr Opin Ophthalmol2014;25:234-9 PMCID:PMC4467564

[89]

HarbourJW.A prognostic test to predict the risk of metastasis in uveal melanoma based on a 15-gene expression profile.Methods Mol Biol2014;1102:427-40 PMCID:PMC4476294

[90]

FarbergAS,WhiteR.Impact of a 31-gene expression profiling test for cutaneous melanoma on dermatologists' clinical management decisions.J Drugs Dermatol2017;16:428-31

[91]

FerrisLK,MiddlebrookB,LassenN,MaetzoldDJ,RigelDS.Identification of high-risk cutaneous melanoma tumors is improved when combining the online American Joint Committee on cancer individualized melanoma patient outcome prediction tool with a 31-gene expression profile-based classification.J Am Acad Dermatol2017;76:818-25

[92]

HutterC.The cancer genome Atlas: creating lasting value beyond its data.Cell2018;173:283-5

[93]

BaileyMH,Porta-PardoE,BertrandD,ColapricoA,KimJ,NgPK,CaoS,GaoJ,WangF,MularoniL,NagarajanN,ZhouDC,HessJM,TamboreroD,SuphavilaiC,KhuranaE,Van AllenEM,NetworkCancer Genome Atlas Research,GodzikA,StuartJ,GetzG,LazarAJ,KarchinR.Comprehensive characterization of cancer driver genes and mutations.Cell2018;173:371-85

[94]

HoadleyKA,HinoueT,LazarAJ,ShenR,CherniackAD,AkbaniR,WongCK,Sanchez-VegaF,SchneiderBG,NoushmehrH,StuartJM,LairdPW.Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 Types of Cancer.Cell2018;173:291-304

[95]

LiuJ,HoadleyKA,LazarAJ,KovatichAJ,LevineDA,OmbergL,ShriverCD,HuH.An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics.Cell2018;173:400-16

[96]

ChenH,PengX,WeinsteinJN; Cancer Genome Atlas Research Network.A pan-cancer analysis of enhancer expression in nearly 9000 patient samples.Cell2018;173:386-99

AI Summary AI Mindmap
PDF

490

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/