Clinical and therapeutic implications of melanoma genomics
Michael Shaughnessy , Nikolai Klebanov , Hensin Tsao
Clinical and therapeutic implications of melanoma genomics
Melanoma represents just 1% of skin cancer but is responsible for the vast majority of skin cancer deaths. Given its implications for therapeutic advancement, the field of melanoma genomics has dramatically expanded in recent years. At one time classified mainly by anatomical location - non-acral cutaneous melanoma (NACM), acral cutaneous melanoma (ACM), mucosal melanoma (MuM), or uveal melanoma (UM) are now further sub-classified based on the mutated genes that drive their initiation, progression, and survival. BRAF gene mutations in NACM are the most frequently occurring and the best-studied, giving rise to the successful use of BRAF inhibitors in clinical practice for the last decade. This development has opened the door for many promising clinical trials and countless investigations into melanoma’s genetic underpinnings. In this review, we offer an overview of melanoma genomics and discuss the most relevant somatic mutations such as BRAF, NRAS, and NF1 in NACM, KIT in ACM and MuM, and GNAQ, GNA11, and BAP1 in UM. Particular emphasis is placed on the biochemical pathways driven by each mutation, their associated clinical manifestations, and their role as current and future therapeutic targets.
Melanoma / cutaneous melanoma / genetics / genomics / BRAF / NRAS / NF1 / skin cancer
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
US National Library of Medicine. A trial of niraparib in BAP1 and other DNA damage response (DDR) deficient neoplasms (UF-STO-ETI-001). Available from: https://clinicaltrials.gov/ct2/show/NCT03207347. [Last accessed on 19 Sept 2018] |
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
US National Library of Medicine. A trial of niraparib in BAP1 and other DNA damage response (DDR) deficient neoplasms (UF-STO-ETI-001). Available from: https://clinicaltrials.gov/ct2/show/NCT03207347. [Last accessed on 19 Sept 2018] |
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
/
| 〈 |
|
〉 |