Radiogenomics of medulloblastoma: imaging surrogates of molecular biology

Archya Dasgupta , Tejpal Gupta

Journal of Translational Genetics and Genomics ›› 2018, Vol. 2 ›› Issue (1) : 15

PDF
Journal of Translational Genetics and Genomics ›› 2018, Vol. 2 ›› Issue (1) :15 DOI: 10.20517/jtgg.2018.21
Review
Review

Radiogenomics of medulloblastoma: imaging surrogates of molecular biology

Author information +
History +
PDF

Abstract

Medulloblastoma is a heterogeneous disease comprising four molecular subgroups - wingless (WNT), sonic hedge hog (SHH), group 3, and group 4, with distinct developmental origins, unique transcriptional profiles, diverse phenotypes, and varying clinical outcomes. Magnetic resonance imaging (MRI) is the preferred first-line imaging modality in the diagnosis and staging of suspected brain tumors including medulloblastoma. It is being increasingly recognized that imaging features reflect underlying disease biology that can serve as independent predictive and prognostic biomarkers. Radiogenomics is an emerging field of research that aims to define relationships between non-invasive imaging features (radio-phenotypes) and genomic data/molecular markers (molecular phenotypes). Recent studies have reported encouraging data regarding imaging genomics of medulloblastoma with certain MRI features correlating with specific molecular subgroups. These include lateralized cerebellar location for SHH-subgroup; cerebellopontine angle location for WNT-subgroup; and inferior location with dilation of superior recess of the IVth ventricle for group 4 tumors. Minimal enhancement of primary tumor and ependymal metastases (infundibular/suprasellar) with mismatching pattern is a specific feature of group 4 medulloblastoma. A 5-metabolite signature profile on magnetic resonance spectroscopy reliably differentiates SHH-subgroup from non-WNT/non-SHH medulloblastoma. SHH-specific binary nomogram (location on horizontal and vertical axis, relationship with dorsal brainstem, pattern of contrast-enhancement, and peri-tumoral edema as discriminating imaging features) is associated with excellent predictive accuracy, followed by group 4-specific nomogram, with suboptimal accuracy of WNT and group 3-specific nomograms. The advent of deep machine-learning techniques and convoluted artificial neural networks should provide unique opportunities to further improve the accuracy of such radiogenomic correlation and prediction.

Keywords

Genomics / imaging / medulloblastoma / molecular subgrouping

Cite this article

Download citation ▾
Archya Dasgupta, Tejpal Gupta. Radiogenomics of medulloblastoma: imaging surrogates of molecular biology. Journal of Translational Genetics and Genomics, 2018, 2(1): 15 DOI:10.20517/jtgg.2018.21

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Leece R,Ostrom QT,Kruchko C.Global incidence of malignant brain and other central nervous system tumors by histology, 2003-2007..Neuro Oncol2017;19:1553-64 PMCID:PMC5737839

[2]

Khanna V,Ostrom QT,Kruchko C.Incidence and survival trends for medulloblastomas in the United States from 2001 to 2013..J Neurooncol2017;135:433-41

[3]

Kool M,Remke M,Schlanstein M.Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, group 3, and group 4 medulloblastomas..Acta Neuropathol2012;123:473-84 PMCID:PMC3306778

[4]

Gajjar A,Karajannis MA,Witt H.Pediatric brain tumors: innovative genomic information is transforming the diagnostic and clinical landscape..J Clin Oncol2015;33:2986-98 PMCID:PMC4567701

[5]

Gupta T,Jalali R..Molecular subgrouping of medulloblastoma: impact upon research and clinical practice..Curr Pediatr Rev2015;11:106-19

[6]

Taylor MD,Korshunov A,Cho YJ.Molecular subgroups of medulloblastoma: the current consensus..Acta Neuropathol2012;123:465-72 PMCID:PMC3306779

[7]

Louis DN,Reifenberger G,Figarella-Branger D.The 2016 World Health Organization classification of tumors of the central nervous system: a summary..Acta Neuropathol2016;131:803-20

[8]

Northcott PA,Witt H,Eberhart CG.Medulloblastoma comprises four distinct molecular variants..J Clin Oncol2011;29:1408-14 PMCID:PMC4874239

[9]

Kool M,Bunt J,Lakeman A.Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features..PLoS One2008;3:e3088 PMCID:PMC2518524

[10]

Cho YJ,Tamayo P,Ligon A.Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome..J Clin Oncol2011;29:1424-30 PMCID:PMC3082983

[11]

Kunder R,Sridhar E,Goel N.Real-time PCR assay based on the differential expression of microRNAs and protein-coding genes for molecular classification of formalin-fixed paraffin embedded medulloblastomas..Neuro Oncol2013;15:1644-51 PMCID:PMC3829591

[12]

Ellison DW,Dalton J,Lusher ME.Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables..J Clin Oncol2011;29:1400-7 PMCID:PMC3525837

[13]

Kaur K,Kumar A,Julka PK.Integrating molecular subclassification of medulloblastomas into routine clinical practice: a simplified approach..Brain Pathol2016;26:334-43

[14]

Schwalbe EC,Lindsey JC,Ryan SL.DNA methylation profiling of medulloblastoma allows robust subclassification and improved outcome prediction using formalin-fixed biopsies..Acta Neuropathol2013;125:359-71 PMCID:PMC4313078

[15]

Hovestadt V,Kool M,Northcott PA.Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays..Acta Neuropathol2013;125:913-6 PMCID:PMC3661908

[16]

Koeller KK.From the archives of the AFIP: medulloblastoma: a comprehensive review with radiologic-pathologic correlation..Radiographics2003;23:1613-37

[17]

Gupta T,Rajshekhar V,Shirsat N.Indian society of neuro-oncology consensus guidelines for the contemporary management of medulloblastoma..Neurol India2017;65:315-32

[18]

Kuo MD.Behind the numbers: decoding molecular phenotypes with radiogenomics--guiding principles and technical considerations..Radiology2014;270:320-5

[19]

Gillies RJ,Hricak H..Radiomics: images are more than pictures, they are data..Radiology2016;278:563-77 PMCID:PMC4734157

[20]

Kickingereder P.Radiomics, metabolic, and molecular MRI for brain tumors..Semin Neurol2018;38:32-40

[21]

Teo WY,Su JM,Wang J.Implications of tumor location on subtypes of medulloblastoma..Pediatr Blood Cancer2013;60:1408-10

[22]

Perreault S,Achrol AS,Liu TT.MRI surrogates for molecular subgroups of medulloblastoma..AJNR Am J Neuroradiol2014;35:1263-9 PMCID:PMC4819007

[23]

Wefers AK,Poschl J,Monoranu CM.Subgroup-specific localization of human medulloblastoma based on pre-operative MRI..Acta Neuropathol2014;127:931-3

[24]

Lastowska M,Trubicka J,Drogosiewicz M.Contrast enhancement pattern predicts poor survival for patients with non-WNT/SHH medulloblastoma tumours..J Neurooncol2015;123:65-73 PMCID:PMC4439433

[25]

Bluml S,Sposto R,Robison NJ.Molecular subgroups of medulloblastoma identification using noninvasive magnetic resonance spectroscopy..Neuro Oncol2016;18:126-31 PMCID:PMC4677409

[26]

Patay Z,Hwang SN,Li Y.MR imaging characteristics of wingless-type-subgroup pediatric medulloblastoma..AJNR Am J Neuroradiol2015;36:2386-93 PMCID:PMC4827780

[27]

Keil VC,Reh C,Reinert C.Imaging biomarkers for adult medulloblastomas: genetic entities may be identified by their MR imaging radiophenotype..AJNR Am J Neuroradiol2017;38:1892-8

[28]

Zhao F,Zhou Q,Wang B.Distinctive localization and MRI features correlate of molecular subgroups in adult medulloblastoma..J Neurooncol2017;135:353-60

[29]

Mata-Mbemba D,Laughlin S,Ramaswamy V.MRI characteristics of primary tumors and metastatic lesions in molecular subgroups of pediatric medulloblastoma: a single-center study..AJNR Am J Neuroradiol2018;39:949-55

[30]

Zapotocky M,Sumerauer D,Lassaletta A.Differential patterns of metastatic dissemination across medulloblastoma subgroups..J Neurosurg Pediatr2018;21:145-52

[31]

Dasgupta A,Pungavkar S,Epari S.Nomograms based on pre-operative multi-parametric magnetic resonance imaging for prediction of molecular subgrouping in medulloblastoma: results from a radiogenomics study of 111 patients..Neuro Oncol2018;

[32]

Gibson P,Robinson G,Currle DS.Subtypes of medulloblastoma have distinct developmental origins..Nature2010;468:1095-9 PMCID:PMC3059767

[33]

Gilbertson RJ.The origins of medulloblastoma subtypes..Annu Rev Pathol2008;3:341-65

[34]

Phoenix TN,Boop S,Jacus MO.Medulloblastoma genotype dictates blood brain barrier phenotype..Cancer Cell2016;29:508-22 PMCID:PMC4829447

[35]

Zeltzer PM,Finlay JL,Rorke LB.Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: conclusions from the Children’s Cancer Group 921 randomized phase III study..J Clin Oncol1999;17:832-45

[36]

Ramaswamy V,Bouffet E,Clifford SC.Risk stratification of childhood medulloblastoma in the molecular era: the current consensus..Acta Neuropathol2016;131:821-31 PMCID:PMC4867119

[37]

Mulhern RK,Gajjar A,Kun LE.Late neurocognitive sequelae in survivors of brain tumours in childhood..Lancet Oncol2004;5:399-408

[38]

Fossati P,Orecchia R..Pediatric medulloblastoma: toxicity of current treatment and potential role of protontherapy..Cancer Treat Rev2009;35:79-96

[39]

Moxon-Emre I,Bouffet E,Campen CJ.Intellectual outcome in molecular subgroups of medulloblastoma..J Clin Oncol2016;34:4161-70

[40]

Thompson EM,Bouffet E,Luu B.Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis..Lancet Oncol2016;17:484-95 PMCID:PMC4907853

[41]

Colafati GS,Carducci C,Carai A.MRI features as a helpful tool to predict the molecular subgroups of medulloblastoma: state of the art..Ther Adv Neurol Disord2018;11:1756286418775375 PMCID:PMC6024494

[42]

Cavalli FMG,Rampasek L,Shih DJH.Intertumoral heterogeneity within medulloblastoma subgroups..Cancer Cell2017;31:737-54 PMCID:PMC6163053

[43]

Schwalbe EC,Nakjang S,Smith AJ.Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study..Lancet Oncol2017;18:958-71 PMCID:PMC5489698

[44]

Parmar C,Bussink J,Aerts HJ.Machine learning methods for quantitative radiomic biomarkers..Sci Rep2015;5:13087 PMCID:PMC4538374

[45]

Zhou M,Chaudhury B,Goldgof D.Radiomics in brain tumor: image assessment, quantitative feature descriptors, and machine-learning approaches..AJNR Am J Neuroradiol2018;39:208-16 PMCID:PMC5812810

PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

/