Which came first: validity or clinical testing? The example of long QT genes
Lacey Boshe , A. Katherine M. Foreman , Jennifer L. Goldstein , Natasha T. Strande , Jonathan S. Berg , Julianne M. O’Daniel
Which came first: validity or clinical testing? The example of long QT genes
Aim: To investigate the potential relationship between the strength of evidence for a gene-disease association and inclusion of the gene on a targeted, indication-based gene panel test for hereditary long QT syndrome (LQTS) and to explore factors that may influence laboratory decisions about the inclusion or exclusion of genes from these clinical tests.
Methods: A comprehensive literature search was performed to quantify existing evidence supporting putative LQTS gene-disease associations. This evidence included the year that the gene was first implicated in LQTS, the total number of published cases of LQTS attributed to the gene, and the presence of published segregation and functional data for the gene. To explore the possible relationship between the published evidence for clinical validity of each gene and availability of clinical genetic testing, semi-structured interviews were conducted with key laboratory stakeholders. Representatives from nine US laboratories offering clinical LQTS gene testing agreed to be interviewed regarding decision-making about when and why genes comprising their clinical LQTS test offerings were added.
Results: Genes associated with LQTS before 2006 generally had more reported cases of LQTS and the greatest amount of supporting segregation and functional data prior to being offered as a clinical test. For genes first linked to LQTS after 2006, these trends are less linear and the timeframe between initial report and inclusion on clinical test menus decreased substantially. Advances in technology, lifting of patents, clinician request, and literature searches were cited as the main factors that influence composition of LQTS gene panel tests. Paradoxically, one lab director noted that it may require more evidence to remove a gene than to add a gene to a clinical test panel.
Conclusion: Our evaluation of the LQTS genes illustrates the nuanced relationship between published evidence supporting a gene-disease association and availability of clinical testing. Expert assessment of clinical validity of gene-disease associations may help laboratories to determine gene panel content. The ultimate impact of such information on the composition of clinical gene tests as well as their utilization by clinicians and coverage by health insurance policies remains to be seen.
Clinical validity / NGS tests / long QT syndrome / gene panels / PanelApp / ClinGen
| [1] |
|
| [2] |
|
| [3] |
Transforming Genetic Medicine Initiative (TGMI) online resource. GEMSTAR. Available from: http://www.thetgmi.org//gemstar/. [Last accessed on 24 Jun 2018] |
| [4] |
Genomics England PanelApp online resource. Long QT syndrome (Version 1.5). Available from: https://panelapp.genomicsengland.co.uk/panels/76/. [Last accessed 24 Jun 2018] |
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
National human genome research institute (NHGRI) online resource. Available from: www.genome.gov/10002335/regulation-of-genetic-tests/. [Last accessed on 25 Jun 2018] |
| [26] |
|
| [27] |
|
| [28] |
|
/
| 〈 |
|
〉 |