MERRF and MELAS: current gene therapy trends and approaches

Ciara Ann Agresti , Penelope Nicole Halkiadakis , Peter Tolias

Journal of Translational Genetics and Genomics ›› : 9

PDF
Journal of Translational Genetics and Genomics ›› :9 DOI: 10.20517/jtgg.2018.05
Review
review-article

MERRF and MELAS: current gene therapy trends and approaches

Author information +
History +
PDF

Abstract

The mitochondrion is a unique organelle that predominantly functions to produce useful cellular energy in the form of adenosine triphosphate (ATP). Unlike other non-nuclear eukaryotic organelles (with the exception of chloroplasts), mitochondria have two lipid membranes that enclose their own mitochondrial DNA (mtDNA) and ribosomes for protein production. Similar to nuclear DNA, mtDNA is equally susceptible to mutations that may be classified as either pathogenic or nonpathogenic. Myoclonic Epilepsy with Ragged Red Fibers (MERRF) and Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like Episodes (MELAS) are mitochondrial diseases originating from pathogenic point mutations located within mtDNA. Currently, there is no cure and patient care primarily focuses on treating each disease’s associated symptoms. When considering the multiple barriers existing between the extracellular surface of the plasma membrane and the location of the mtDNA within the mitochondrial matrix, developing a pharmacological therapeutic that can both overcome these barriers and correct an mtDNA causing mitochondrial disease remains difficult at best. Interestingly, the field of gene therapy may provide an opportunity for effective therapeutic intervention by introducing a genetic payload (to a particular cellular gene) to induce the correction. This review primarily focuses on understanding the principles of mitochondrial biology leading to the mtDNA diseases, MERRF and MELAS, while providing a landscape perspective of gene therapy research devoted to curing these diseases.

Keywords

Mitochondria / mitochondrial biology / mitochondrial DNA / mitochondrial diseases / gene therapy / MERRF / A8344G / MELAS / A3243G

Cite this article

Download citation ▾
Ciara Ann Agresti, Penelope Nicole Halkiadakis, Peter Tolias. MERRF and MELAS: current gene therapy trends and approaches. Journal of Translational Genetics and Genomics 9 DOI:10.20517/jtgg.2018.05

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SaganL.On the origin of mitosing cells.J Theor Biol1967;14:255-74

[2]

RenardP,RommelaereG.LouPH.Mammalian mitochodrial genetics, genomics and turnover.Cellular Bioenergetics in Health and Diseases: New Perspectives in Mitochondrial Biology.2012;Kerala, IndiaResearch Signpost1-83

[3]

MargulisL.Origin of Eukaryotic Cells.1970;New Haven and LondonYale University Press PMCID:PMC1501576

[4]

CohenB.Introduction: Mitochondrial Medicine. In: Saneto RP, Parikh S, Cohen BH, editors. Mitochondrial Case Studies: UnderlyingMechanisms and Diagnosis. Elsevier; 2016. pp. 1-9

[5]

RobinED.Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells.J Cell Physiol1988;136:507-13

[6]

Iwasa J, Marshall M. Karp's Cell and Molecular Biology. 8th ed. John Wiley & Sons, Inc.; 2016. pp. 168–97.

[7]

YouleRJ.Mitochondrial fission, fusion, and stress.Science2012;337:1062-5 PMCID:PMC4762028

[8]

WestrateLM,MartinKR,MacKeiganJP.Mitochondrial morphological features are associated with fission and fusion events.PLoS One2014;9:e95265 PMCID:PMC3986258

[9]

RaulfsEC,Dos SantosPC,DeanDR.In vivo iron-sulfur cluster formation.Proc Natl Acad Sci U S A2008;105:8591-6 PMCID:PMC2438426

[10]

SchulzH.Beta oxidation of fatty acids.Biochim Biophys Acta1991;1081:109-20

[11]

ChiabrandoD,TolosanoE.Heme and erythropoiesis: more than a structural role.Haematologica2014;99:973-83 PMCID:PMC4040894

[12]

MillerWL.Early steps in steroidogenesis: intracellular cholesterol trafficking.J Lipid Res2011;52:2111-35 PMCID:PMC3283258

[13]

Ah MewN,GropmanAL,ChapmanKA.AdamMP,PagonRA,BeanLJH,AmemiyaA.Urea Cycle Disorders Overview..SourceGeneReviews® [Internet].2003;Seattle (WA)University of Washington, Seattle

[14]

GiorgiC,BononiA,De MarchiE,MissiroliC,PolettiF,SuskiJM,PintonP.Mitochondrial calcium homeostasis as potential target for mitochondrial medicine.Mitochondrion2012;12:22-85 PMCID:PMC3281195

[15]

CadenasE.Mitochondrial free radical generation, oxidative stress, and aging.Free Radic Biol Med2000;29:222-30

[16]

ArnoultD,TattoliI.Mitochondria in innate immunity.EMBO Rep2011;12:901-10 PMCID:PMC3166463

[17]

KuwabaraM,NiwaK.Regulation of cell survival and death signals induced by oxidative stress.J Clin Biochem Nutr2008;43:51-7 PMCID:PMC2533719

[18]

NassMM.Intramitochondrial fibers with DNA characteristics.I. Fixation and electron staining reactions. J Cell Biol1963;19:593-611

[19]

AndersonS,BarrellBG,CoulsonAR,EperonIC,RoeBA,SchreierPH,StadenR.Sequence and organization of the human mitochondrial genome.Nature1981;290:457-65

[20]

AndrewsRM,ChinneryPF,TurnbullDM.Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA.Nat Genet1999;23:147

[21]

TaanmanJW.The mitochondrial genome: structure, transcription, translation and replication.Biochim Biophys Acta1999;1410:103-23

[22]

NichollsTJ.In D-loop: 40 years of mitochondrial 7S DNA.Exp Gerontol2014;56:175-81

[23]

KuhlI,PosseV,MourierA,BonekampNA,FilipovskaA,GustafssonCM.POLRMT regulates the switch between replication primer formation and gene expression of mammalian mtDNA.Sci Adv2016;2:e1600963 PMCID:PMC4975551

[24]

ChacinskaA,MilenkovicD,PfannerN.Importing mitochondrial proteins: machineries and mechanisms.Cell2009;138:628-44 PMCID:PMC4099469

[25]

SchonEA.Medicinal and genetic approaches to the treatment of mitochondrial disease.Curr Med Chem2003;10:2523-33

[26]

United Mitochodnrial Disease Foundation. Types of Mitochondrial Diseases. Available from: http://www.umdf.org/types/ [Last access on 28 Jun 2018].

[27]

ChinneryPF.Mitochondrial Disorders Overview.In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle;2000;

[28]

GreavesLC.Mitochondrial DNA mutations in human disease.IUBMB Life2006;58:143-51

[29]

SchaeferAM,TurnbullDM.The epidemiology of mitochondrial disorders--past, present and future.Biochim Biophys Acta2004;1659:115-20

[30]

SanetoRP.Mitochondrial disease in childhood: mtDNA encoded.Neurotherapeutics2013;10:199-211 PMCID:PMC3625387

[31]

RossignolR,RocherC,MazatJP.Mitochondrial threshold effects.Biochem J2003;370:751-62 PMCID:PMC1223225

[32]

ShoffnerJM,LezzaAM,BallingerSW.Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation.Cell1990;61:931-7

[33]

El-HattabAW.Mitochondrial cardiomyopathies.Front Cardiovasc Med2016;3:25

[34]

ChinneryPF.Mitochondrial genetics.Br Med Bull2013;106:135-59 PMCID:PMC3675899

[35]

CiafaloniE,ShanskeS,SilvestriG,SimonettiS,DonatiMA,MartinuzziA,ServideiS,BonillaE,RowlandLP,DiMauroS.MELAS: clinical features, biochemistry, and molecular genetics.Ann Neurol1992;31:391-8

[36]

DiMauroS.MERRF.In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle;2003;

[37]

DiMauroS.MELAS.In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle;2001;

[38]

MarinS.SanetoRP,CohenBH.Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS)..Mitochondrial Case Studies: Underlying Mechanisms of Disease.2016;Elsevier13-29

[39]

KobayashiY,TominagaK,NiheiK,KagawaY.Respiration-deficient cells are caused by a single point mutation in the mitochondrial tRNA-Leu (UUR) gene in mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS)..Am J Hum Genet1991;49:590-9 PMCID:PMC1683152

[40]

MehrazinM,KaufmannP,CokuJ,NainiA,DiMauroS.Longitudinal Changes of mtDNA A3243G Mutation Load and Level of Functioning in MELAS.Am J Med Genet A2009;149A:584-7 PMCID:PMC2663596

[41]

MahataB,MukherjeeS.Correction of translational defects in patient-derived mutant mitochondria by complex-mediated import of a cytoplasmic tRNA.J Biol Chem2005;280:5141-4

[42]

MahataB,MishraS,AdhyaS.Functional delivery of a cytosolic tRNA into mutant mitochondria of human cells.Science2006;314:471-4

[43]

KolesnikovaOA,Jacquin-BeckerC,Chrzanowska-LightowlersZM,MartinRP.Nuclear DNA-encoded tRNAs targeted into mitochondria can rescue a mitochondrial DNA mutation associated with the MERRF syndrome in cultured human cells.Hum Mol Genet2004;13:2519-34

[44]

KarichevaOZ,SchirtzT,Mager-HeckelAM,BouchehamA,MartinRP,TarassovI.Correction of the consequences of mitochondrial 3243A>G mutation in the MT-TL1 gene causing the MELAS syndrome by tRNA import into mitochondria.Nucleic Acids Res2011;39:8173-86 PMCID:PMC3185436

[45]

SasarmanF,ShoubridgeEA.The A3243G tRNALeu(UUR) MELAS mutation causes amino acid misincorporation and a combined respiratory chain assembly defect partially suppressed by overexpression of EFTu and EFG2.Hum Mol Genet2008;17:3697-707

[46]

ParkH,KingMP.Overexpressed mitochondrial leucyl-tRNA synthetase suppresses the A3243G mutation in the mitochondrial tRNA(Leu(UUR)) gene.RNA2008;14:2407-16 PMCID:PMC2578859

[47]

LiR.Human mitochondrial leucyl-tRNA synthetase corrects mitochondrial dysfunctions due to the tRNALeu(UUR) A3243G mutation, associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms and diabetes.Mol Cell Biol2010;30:2147-54 PMCID:PMC2863588

[48]

PerliE,PisanoA,CampeseAF,GhezziD,TuppenHA,Di MiccoP,TaylorRW,FrancisciS,FrontaliL,d'AmatiG.The isolated carboxy-terminal domain of human mitochondrial leucyl-tRNA synthetase rescues the pathological phenotype of mitochondrial tRNA mutations in human cells.EMBO Mol Med2014;6:169-82

[49]

PerliE,GiordanoC,MontanariA,CampeseAF,TuppenHA,PoserE,TaylorRW,ColottiG.Short peptides from leucyl-tRNA synthetase rescue disease-causing mitochondrial tRNA point mutations.Hum Mol Genet2016;25:903-15 PMCID:PMC4754043

[50]

ChangJC,ChuangCS,WeiYH,LiuCS.Treatment of human cells derived from MERRF syndrome by peptide-mediated mitochondrial delivery.Cytotherapy2013;15:1580-96

[51]

ChangJC,LiYC,WeiYH,HsiehM.Functional recovery of human cells harbouring the mitochondrial DNA mutation MERRF A8344G via peptide-mediated mitochondrial delivery.Neurosignals2013;21:160-73

[52]

ChangJC,LiuKH,ChengFC,TronstadKJ.Peptide-mediated delivery of donor mitochondria improves mitochondrial function and cell viability in human cybrid cells with the MELAS A3243G mutation.Sci Rep2017;7:10710 PMCID:PMC5587702

[53]

MuratovskaA,TaylorRW,SmithRA,MartinSW.Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease.Nucleic Acids Res2001;29:1852-63 PMCID:PMC37250

[54]

TaylorRW,TurnbullDM.Selective inhibition of mutant human mitochondrial DNA replication in vitro by peptide nucleic acids.Nat Genet1997;15:212-5

[55]

BacmanSR,PeraltaS,ChomynA,WilliamsSL.mitoTALENs as DNA editing tools for mitochondrial diseases.Mitochondrion2015;24:S22

[56]

HashimotoM,PeraltaS,ChomynA,WilliamsSL.MitoTALEN: a general approach to reduce mutant mtDNA loads and restore oxidative phosphorylation function in mitochondrial diseases.Mol Ther2015;23:1592-9 PMCID:PMC4817924

AI Summary AI Mindmap
PDF

822

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/