Influence of Undercooling on the Non-equilibrium Solidification Process and Microstructure of Cu-Ni Alloys

Junyuan Wang , Wenhua Du , Bohao Hao , Hongfu Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2025, Vol. 40 ›› Issue (4) : 1151 -1161.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2025, Vol. 40 ›› Issue (4) : 1151 -1161. DOI: 10.1007/s11595-025-3152-2
Metallic Materials
research-article

Influence of Undercooling on the Non-equilibrium Solidification Process and Microstructure of Cu-Ni Alloys

Author information +
History +
PDF

Abstract

By applying the rapid solidification technique of deep undercooling, Cu65Ni35 and Cu60Ni40 alloys achieved maximum undercoolings of 284 and 222 K, respectively. Microstructural images captured reveal grain refinement in both alloys across both large and small undercooling ranges. High-speed photography was used to analyze the relationship between solidification front morphology and undercooling, showing that dendrite remelting and fragmentation caused grain refinement under small undercooling, while stress-induced recrystallization is responsible under large undercooling. Microhardness testing further demonstrates a sudden drop in microhardness near the critical undercooling point, providing evidence for grain refinement due to recrystallization in large undercooling tissues.

Keywords

undercooling / microstructure / grain refinement / solidification rate

Cite this article

Download citation ▾
Junyuan Wang, Wenhua Du, Bohao Hao, Hongfu Wang. Influence of Undercooling on the Non-equilibrium Solidification Process and Microstructure of Cu-Ni Alloys. Journal of Wuhan University of Technology Materials Science Edition, 2025, 40(4): 1151-1161 DOI:10.1007/s11595-025-3152-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

XinT, TangS, JiF, et al.. Phase Transformations in an Ultralight BCC Mg Alloy during Anisothermal Aging[J]. Acta Materialia, 2022, 239118 248

[2]

HerlachDM. Non-equilibrium Solidification of Undercooled Metallic Melts[J]. Mater. Sci. Eng. R., 1994, 12: 177-272

[3]

KurzW, FisherDJFundamentals of Solidification, 19984th Revised EditionSwitzerland. Trans. Tech. Publications Ltd. 1292[M]

[4]

XinT, ZhaoYH, MahjoubR, et al.. Ultrahigh Specific Strength in a Magnesium Alloy Strengthened by Spinodal Decomposition[J]. Science Advances, 2021, 7: 1-9

[5]

Tian Xiaolin, Zhao Yuhong, Gu Tao, et al. Cooperative Effect of Strength and Ductility Processed by Thermomechanical Treatment for Cu-Al-Ni Alloy[J]. Materials Science and Engineering: A., 2022: 143 485

[6]

YangC, LiuF, YangG, et al.. Structure Evolution Upon Non-Equilibrium Solidification of Bulk Undercooled Fe-B System[J]. J. Cryst. Growth, 2009, 311(2): 404-412

[7]

MullisAM, CochraneRF. Grain Refinement and the Stability of Dendrites Growing Into Undercooled Pure Metals and alloys[J]. J. Appl. Phys., 1997, 82(8): 3 783-3 790

[8]

ChenZ, LongM, WeihaiZ. Development and Validation of a One-dimensional Solidification Model-Part II: Model Validation for Molten Lead-bismuth[J]. Annals of Nuclear Energy, 2023, 193110 058

[9]

LiangX, BosC, HermansM, et al.. An Improved Cellular Automata Solidification Model Considering Kinetic Undercooling[J]. Metallurgical and Materials Transactions B, 2023, 54(3): 1 088-1 098

[10]

NieroG, GoiA, VigoloV, et al.. Repeatability and Reproducibility of Curd Yield and Composition in a Miniaturized Coagulation Model[J]. Journal of Dairy Science, 2020, 103(12): 11 100-11 105

[11]

SoysalT. Effect of solidification models on predicting susceptibility of carbon steels to solidification cracking[J]. Welding in the World, 2021, 65(10): 1 943-1 954

[12]

KobayashiY, TodorokiH, MizunoK. Problems in Solidification Model for Micro segregation Analysis of Fe-Cr-Ni-Mo-Cu Alloys[J]. ISIJ International, 2019, 59(2): 277-282

[13]

DuwezP, WillensRH, Klement. Continuous Series of Metastable Solid Solutions in Silver Copper Alloys[J]. Journal of Applied Physics, 1960, 31(6): 1 136-1 140

[14]

Ying R, Zhu H, Wang Q, et al. Dendrite Growth and Micromechanical Properties of Rapidly Solidified Ternary Ni-Fe-Ti Alloy[J]. Progress in Natural Science: Materials International, 2017(5): 109–113

[15]

WangW, KongZ. Phase separation and Microhardness of Rapidly Solidified High-entropy CoCrFeNiCux Alloys[J]. Journal of Alloys and Compounds, 2021, 8531156 451

[16]

ChenZ, ZhangY, WangS, et al.. Microstructure and Mechanical Properties of Undercooled Fe80C5Si10B5 Eutectic Alloy[J]. Journal of Alloys and Compounds, 2018, 747: 846-853

[17]

AbulMR, CochraneRF, MullisAM. Microstructural Development and Mechanical Properties of Drop Tube Atomized Al-2.85wt%Fe[J]. Journal of Materials Science & Technology, 2022, 104: 41-51

[18]

VolmerM, WeberA. Keimbildung in Übersaqttigten Gebilden[J]. Zeitschrift fur Physikalische Chemie, 1926, 19(1): 277-301

[19]

BeckerR, DoringW. Kinetische Behandlung Der Keimbildung in Übersättigten Dämpfen[J]. Annalen der Physik, 1935, 416(8): 719-752

[20]

LiuF, GuoX, YangG. Research of Grain Refinement in Undercooled DD3 Single Crystal Superalloy[J]. Materials Research Bulletin, 2001, 36(1): 54-63

[21]

ChenQ, ChenZ, LiuF, et al.. The Investigation of Recrystallization Developed in the Largely Undercooled Ni-3at% Sn Alloy[J]. Journal of Alloys and Compounds, 2015, 638: 109-114

[22]

FarvidSS, RadovanovicPV. Phase Transformation of Colloidal In2O3 Nanocrystals Driven by the Interface Nucleation Mechanism: A Kinetic Study[J]. J. Am. Chem. Soc., 2012, 134(16): 7 015-7 024

[23]

LiJF, LiuYC, LuYL, et al.. Structural Evolution of Undercooled Ni-Cu Alloys[J]. Journal of Crystal Growth, 1998, 192(3–4): 462-470

[24]

LiuN, LiuF, YangG, et al.. Grain Refinement of Undercooled Single-phase Fe70Co30 Alloys[J]. Physica B: Condensed Matter, 2007, 387(1–2): 151-155

RIGHTS & PERMISSIONS

Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature

AI Summary AI Mindmap
PDF

86

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/