Effects of MgO/SiO2 Ratio on Crystallization Properties of MgSiO3 and Mg2SiO4 Nanocrystals in Aluminosilicate Glasses

Kangkang Geng , Yunlan Guo , Chao Liu

Journal of Wuhan University of Technology Materials Science Edition ›› 2025, Vol. 40 ›› Issue (4) : 975 -983.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2025, Vol. 40 ›› Issue (4) : 975 -983. DOI: 10.1007/s11595-025-3135-3
Advanced Materials
research-article

Effects of MgO/SiO2 Ratio on Crystallization Properties of MgSiO3 and Mg2SiO4 Nanocrystals in Aluminosilicate Glasses

Author information +
History +
PDF

Abstract

Transparent glass-ceramics containing MgSiO3 and/or Mg2SiO4 nanocrystals were prepared. Effects of MgO/SiO2 ratio on crystallization properties of MgSiO3 and Mg2SiO4 nanocrystals were investigated. When the MgO/SiO2 ratio is relatively low, crystallization of MgSiO3 is favored, whereas a higher MgO/SiO2 ratio tends to promote the crystallization of Mg2SiO4. Glass-ceramics are transparent in the visible range due to the small size of the precipitated nanocrystals. Replacing SiO2 with MgO results in an increase in Vickers hardness, and the Vickers hardness can be further enhanced through the precipitation of MgSiO3 and Mg2SiO4 nanocrystals. The findings presented herein are meaningful for the preparation of highly transparent glass-ceramics containing MgSiO3 and Mg2SiO4 nanocrystals.

Keywords

glass-ceramic / MgSiO3 / Mg2SiO4 / glass structure / vickers hardness

Cite this article

Download citation ▾
Kangkang Geng, Yunlan Guo, Chao Liu. Effects of MgO/SiO2 Ratio on Crystallization Properties of MgSiO3 and Mg2SiO4 Nanocrystals in Aluminosilicate Glasses. Journal of Wuhan University of Technology Materials Science Edition, 2025, 40(4): 975-983 DOI:10.1007/s11595-025-3135-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HanL, SongJ, ZhangQ, et al.. Crystallization, Structure and Characterization of MgO-Al2O3-SiO2-P2O5 Transparent Glass-ceramics with High Crystallinity[J]. J. Non-Cryst. Solids., 2018, 481: 123-131

[2]

PinckneyLR. Transparent, High Strain Point Spinel Glass-ceramics[J]. J. Non-Cryst. Solids., 1999, 255: 171-177

[3]

HanL, SongJ, LinC, et al.. Crystallization, Structure and Properties of MgO-Al2O3-SiO2 Highly Crystalline Transparent Glass-ceramics Nucleated by Multiple Nucleating Agents[J]. J. Eur. Ceram. Soc., 2018, 38: 4 533-4 542

[4]

SeidelS, DittmerM, HölandW, et al.. High-strength, Translucent Glass-ceramics in the System MgO-ZnO-Al2O3-SiO2-ZrO2[J]. J. Eur. Ceram. Soc., 2017, 37: 2 685-2 694

[5]

HungerA, CarlG, RüsselC. Formation of Nano-crystalline Quartz Crystals from ZnO/MgO/Al2O3/TiO2/ZrO2/SiO2 Glasses[J]. Solid State Sci., 2010, 12: 1 570-1 574

[6]

DittmerM, YamamotoC F, BockerC, et al.. Crystallization and Mechanical Properties of MgO/Al2O3/SiO2/ZrO2 Glass-ceramics with and without the Addition of Yttria[J]. Solid State Sci., 2011, 13: 2 146-2 153

[7]

TsaiMT. Synthesis of Nanocrystalline Enstatite Fiber via Alkoxide Sol-gel Process[J]. J. Am. Ceram. Soc., 2005, 88: 1 770-1 772

[8]

PtáčekP, LangK, ŠoukalF, et al.. Preparation and Properties of Enstatite Ceramic Foam from Talc[J]. J. Eur. Ceram. Soc., 2014, 34: 515-522

[9]

GoelA, TulyaganovDU, AgathopoulosS, et al.. Ferreira, Synthesis and Characterization of MgSiO3-containing Glass-ceramics[J]. Ceram. Int., 2007, 33: 1 481-1 487

[10]

MoshtaghiounBM, Gomez-GarciaD, PeñaJI. Mg2SiO4-MgAl2O4 Directionally Solidified Eutectics: Hardness Dependence Modelled Through an Array of Screw Dislocations[J]. J. Eur. Ceram. Soc., 2020, 40: 4 171-4 176

[11]

ChenS, ZhouX, SongW, et al.. Mg2SiO4 As a Novel Thermal Barrier Coating Material for Gas Turbine Applications[J]. J. Eur. Ceram. Soc., 2019, 39: 2 397-2 408

[12]

GoelA, TulyaganovDU, ShaabanER, et al.. Ferreira, Structure and Crystallization Behaviour of Some MgSiO3-based Glasses[J]. Ceram. Int., 2009, 35: 1 529-1 538

[13]

WangZ, ShiZ, WangW, et al.. Synthesis of MgSiO3 Ceramics Using Natural Desert Sand as SiO2 Source[J]. Ceram. Int., 2019, 45: 13 865-13 873

[14]

HuangCM, KuoDH, KimYJ, et al.. Phase Stability of Chemically Derived Enstatite (MgSiO3) Powders[J]. J. Am. Ceram. Soc., 1994, 77: 2 625-2 631

[15]

GoelA, TulyaganovDU, AgathopoulosS, et al.. The Effect of Al2O3 On Sintering and Crystallization of MgSiO3-based Glass-powder Compacts[J]. Ceram. Int., 2008, 34: 505-510

[16]

HolandW, BeallGH. Glass-ceramic Technology[J]. J. Am. Ceram. Soc., 2019, 91: 92-122

[17]

BuddMI. Sintering and Crystallization of a Glass Powder in the MgO-Al2O3-SiO2-ZrO2 System[J]. J. Mater. Sci., 1993, 28: 1 007-1 014

[18]

LaiY, TangX, ZhangH, et al.. Correlation between Structure and Microwave Dielectric Properties of Low-temperature-fired Mg2SiO4 Ceramics[J]. Mater. Res. Bull., 2018, 99: 496-502

[19]

KheradmandfardM, K-BozorgSF, N-AlfesharakiAH, et al.. Ultra-fast, Highly Efficient and Green Synthesis of Bioactive Forsterite Nano-powder via Microwave Irradiation[J]. Mater. Sci. Eng. C., 2018, 92: 236-244

[20]

MostafaviK, GhahariM, BaghshahiS, et al.. Synthesis of Mg2SiO4:Eu3+ by Combustion Method and Investigating Its Luminescence Properties[J]. J. Alloys Compd., 2013, 555: 62-67

[21]

ZampivaRYS, AcauanL, AlvesAK, et al.. Novel Forsterite Nanostructures with High Aspect Ratio via Catalyst-free Route[J]. Mater. Res. Bull., 2014, 60: 507-509

[22]

ShimodaK, TobuY, HatakeyamaM, et al.. Saito, Structural Investigation of Mg Local Environments in Silicate Glasses by Ultra-high Field 25Mg 3QMAS NMR Spectroscopy[J]. Am. Mineral., 2007, 92: 695-698

[23]

TabiraY. Local Structure Around Oxygen Atoms in CaMgSi2O6 Glass by O K-edge EXELFS[J]. Mater. Sci. Eng: B., 1996, 41: 63-66

[24]

WildingMC, BenmoreCJ, TangemanJA, et al.. Evidence of Different Structures in Magnesium Silicate Liquids: Coordination Changes in Forsterite- to Enstatite-composition Glasses[J]. Chem. Geol., 2004, 213: 281-291

[25]

IidefonseP, CalasG, FlankAM, et al.. Low Z Elements (Mg, Al, and Si) K-edge X-ray Absorption Spectroscopy in Minerals and Disordered Systems[J]. Nucl. Instrum. Methods Phys. Res: B., 1995, 97: 172-175

[26]

KroekerS, StebbinsJF. Magnesium Coordination Environments in Glasses and Minerals: New Insight from High-field Magnesium-25 MAS NMR[J]. Am. Mineral., 2000, 85: 1 459-1 464

[27]

KolayS, BhargavaP. Role of MgO in Lowering Glass Transition Temperature and Increasing Hardness of Lithium Silicate Glass and Glass-ceramics[J]. Ceram. Int., 2022, 48: 12 699-12 711

[28]

GuignardM, CormierL. Environments of Mg and Al in MgO-Al2O3-SiO2 Glasses: A Study Coupling Neutron and X-ray Diffraction and Reverse Monte Carlo Modeling[J]. Chem. Geol., 2008, 256: 111-118

[29]

LeeSK, KimHI, KimEJ, et al.. Extent of Disorder in Magnesium Aluminosilicate Glasses: Insights from 27Al and 17O NMR[J]. J. Phys. Chem: C., 2015, 120: 737-749

[30]

BighamA, AghajanianAH, SaudiA, et al.. Hierarchical Porous Mg2SiO4-CoFe2O4 Nanomagnetic Scaffold for Bone Cancer Therapy and Regeneration: Surface Modification and in vitro Studies[J]. Mater. Sci. Eng: C., 2020, 109: 110-579

[31]

ToyodaS, FujinoS, MorinagaK. Density, Viscosity and Surface Tension of 50RO-50P2O5 (R: Mg, Ca, Sr, Ba, and Zn) Glass Melts[J]. J. Non-Cryst. Solids., 2003, 321: 169-174

[32]

LiY, LiangK, CaoJ, et al.. Spectroscopy and Structural State of V4+ Ions in Lithium Aluminosilicate Glass and Glass-ceramics[J]. J. Non-Cryst. Solids., 2010, 356: 502-508

[33]

GuoY, WangJ, RuanJ, et al.. Microstructure and Ion-exchange Properties of Glass-ceramics Containing ZnAl2O4 and β-quartz Solid Solution Nanocrystals[J]. J. Eur. Ceram. Soc., 2021, 41: 5 331-5 340

[34]

HuangQ, LiuJ, HeX, et al.. Analysis of Structure Evolution and Performance in Alkali-free Glass Substrates via XPS and Infrared: Boron-aluminum Anomaly[J]. J. Non-Cryst. Solids., 2021, 555: 120-531

[35]

ChenM, HeF, ShiJ, et al.. Low Li2O Content Study in Li2O-Al2O3-SiO2 Glass-ceramics[J]. J. Eur. Ceram. Soc., 2019, 39: 4 988-4 995

[36]

AronneA, EspositoS, PerniceP. FTIR And DTA Study of Lanthanum Aluminosilicate Glasses[J]. Mater. Chem. Phys., 1997, 51: 163-168

[37]

WangSF, LaiBC, HsuYF, et al.. Relationship between the Structural and Dielectric Properties of Sol-gel Derived CaO-MgO-B2O3-SiO2 Glass-ceramics for 5G Applications in the Millimeter-wave Bands[J]. Ceram. Int., 2023, 49: 38 945-38 953

[38]

MondalK, KumariP, ManamJ. Influence of Doping and Annealing Temperature on the Structural and Optical Properties of Mg2SiO4:Eu3+ Synthesized by Combustion Method[J]. Curr. Appl Phys., 2016, 16: 707-719

[39]

BafrooeiHB, EbadzadehT, MajidianH. Microwave Synthesis and Sintering of Forsterite Nanopowder Produced by High Energy Ball Milling[J]. Ceram. Int., 2014, 40: 2 869-2 876

[40]

ParkSY, LeeSK. High-resolution Solid-state NMR Study of the Effect of Composition on Network Connectivity and Structural Disorder in Multi-component Glasses in the Diopside and Jadeite Join: Implications for Structure of Andesitic Melts[J]. Geochim. Cosmochim. Acta., 2014, 147: 26-42

[41]

GuoY, LiuC, WangJ, et al.. Effect of ZrO2 Crystallization on Ion Exchange Properties in Aluminosilicate Glass[J]. J. Eur. Ceram. Soc., 2020, 40: 2 179-2 184

[42]

DeshkarA, MarcialJ, SouthernSA, et al.. Understanding the Structural Origin of Crystalline Phase Transformations in Nepheline (NaAl-SiO4)-based Glass-ceramics[J]. J. Am. Ceram. Soc., 2017, 100: 2 859-2 878

[43]

SchneiderJ, MastelaroVR, PanepucciH, et al.. 29Si MAS-NMR Studies of Qn Structural Units in Metasilicate Glasses and Their Nucleating Ability[J]. J. Non-Cryst. Solids., 2000, 273: 8-18

[44]

ZhangP, GrandinettiPJ, StebbinsJF. Anionic Species Determination in CaSiO3 Glass Using Two-dimensional 29Si NMR[J]. J. Phys. Chem: B., 1997, 101: 4 004-4 008

[45]

AshbrookSE, BerryAJ, FrostDJ, et al.. 17O and 29Si NMR Parameters of MgSiO3 Phases from High-resolution Solid-state NMR Spectroscopy and First-principles Calculations[J]. J. Am. Chem. Soc., 2007, 129: 13 213-13 224

[46]

AshbrookSE. High-resolution 17O MAS NMR Spectroscopy Of Forsterite (α-Mg2SiO4), Wadsleyite (β-Mg2SiO4), and Ringwoodite (γ-Mg2SiO4)[J]. Am. Mineral., 2005, 90: 1 861-1 870

[47]

McCartyRJ, PalkeAC, StebbinsJF, et al.. Transition Metal Cation Site Preferences in Forsterite (Mg2SiO4) Determined from Paramagnetically Shifted NMR Resonances[J]. Am. Mineral., 2015, 100: 1 265-1 276

[48]

XieY, WangQ, GuF, et al.. The Electro-chemical Properties and Intercalation Mechanism of Low Strain Li2TiO3 as a High-performance Anode Material for Lithium-ion Batteries[J]. J. Alloy. Compd., 2022, 893162 348

RIGHTS & PERMISSIONS

Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature

AI Summary AI Mindmap
PDF

86

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/