Porous Silica Nanospheres Grafted with L-Glutamic Acid for Enantioseparation

Xing Ma , Hui Fan , Yuanli Chen

Journal of Wuhan University of Technology Materials Science Edition ›› 2025, Vol. 40 ›› Issue (4) : 967 -974.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2025, Vol. 40 ›› Issue (4) : 967 -974. DOI: 10.1007/s11595-025-3134-4
Advanced Materials
research-article

Porous Silica Nanospheres Grafted with L-Glutamic Acid for Enantioseparation

Author information +
History +
PDF

Abstract

Ordered porous silica nanospheres with pores vertical to the walls were prepared by using 1,3,5-trimethyl-benzen (TMB) and hexadecitrile trimethyl ammonium bromide(CTAB) as templates. After removing the templates, porous structures were obtained. The porous silica nanosperes were further modified with amino and amino acid functionalization to obtain L-Glutamic acid-functionalized mesoporous silica nanospheres, which were used as chiral selective agents for amino acid enantioseparation such as PheCOOH, PhgCOOH, and TrpCOOH enantiomers. The experimental results show that the functionalized nanospheres have good adsorption selectivity for D-PheCOOH and L-PhgCOOH, especially showing high adsorption selectivity for the L-TrpCOOH enantiomers compared with L-PheCOOH and D-PhgCOOH and D-TrpCOOH enantiomers.

Keywords

enantioseparation / porous silica / amino-functionalized / selective adsorption

Cite this article

Download citation ▾
Xing Ma, Hui Fan, Yuanli Chen. Porous Silica Nanospheres Grafted with L-Glutamic Acid for Enantioseparation. Journal of Wuhan University of Technology Materials Science Edition, 2025, 40(4): 967-974 DOI:10.1007/s11595-025-3134-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

NiuX, ZhaoR, YanS, et al.. Chiral Materials, Progress, Applications, and Prospects[J]. Small, 2023, 19382 303 059

[2]

WangXJ, LiuHH, ChengJK, et al.. Catalytic Enantioselective Synthesis of Chiral Sulfonium Ylides with S-Stereogenic Center[J]. Chem, 2023, 9(6): 1 495-1 504

[3]

ZhangY, ZhouL, LiR, et al.. Comprehensive Assessment of Enantioselective Bioactivity, Toxicity, and Dissipation in Soil of the Chiral Herbicide Flurtamone[J]. J. Agric. Food. Chem., 2023, 71(12): 4 810-4 816

[4]

Sánchez ValeraM, Casas JaraícesR, MontejoM, Rodríguez OrtegaPG. Vibrational Circular Dichroism Study of Chiral Food Additives, γ-valero and γ-caprolactone[J]. Spectrochim. Acta, PartA, 2021, 247119 140

[5]

Asatsuma-OkumuraT, ItoT, HandaH. Molecular Mechanisms of the Teratogenic Effects of Thalidomide[J]. Pharmaceuticals, 2020, 13595

[6]

KalkmanHO. Activation of σ1-Receptors by R-Ketamine May Enhance the Antidepressant Effect of S-Ketamine[J]. Biomedicines, 2023, 11102 664

[7]

ZhaoC, LuW, MengXG. Using Chiral Magnetic Surface Molecularly Imprinted Polymers Forchiral Separation of Ofloxacin[J]. J. Polym. Res., 2021, 286225

[8]

KeJ, ZhangY, ZhangX, et al.. Novel Chiral Composite Membrane Prepared Via the Interfacial Polymerization of Diethylamino-beta-cyclodextrin for the Enantioseparation of Chiral Drugs[J]. J. Membr.Sci., 2020, 597117 635

[9]

WuQ, LvH, ZhaoL. Applications of Carbon Nanomaterials in Chiral Separation[J]. TrAC. Trends Anal. Chem., 2020, 129115 941

[10]

ArenasM, MartínJ, SantosJL, et al.. An Overview of Analytical Methods for Enantiomeric Determination of Chiral Pollutants in Environmental Samples and Biota[J]. TrAC. Trends Anal. Chem., 2021, 143116 370

[11]

ChenT, LiH, ShiX, et al.. Robust Homochiral Polycrystalline Metal-Organic Framework Membranes for High-Performance Enanti-oselective Separation[J]. J. Am. Chem. Soc., 2024, 146(21): 14 433-14 438

[12]

WangY, HuangL, LiS, et al.. The Capture and Catalytic Conversion of CO2 by Dendritic Mesoporous Silica-Based Nanoparticles[J]. Energy Environ. Mater., 2023, 72e12593

[13]

HaynesT, ErsenO, DuboisV, et al.. Protecting a Pd/CB Catalyst by a Mesoporous Silica Layer[J]. Appl. Catal., B., 2019, 241: 196-204

[14]

ZhangW, LiuF, KanX, et al.. Developing Ordered Mesoporous Silica Superacids for High-precision Adsorption and Separation of Ammonia[J]. Chem. Eng. J., 2023, 457141 263

[15]

ShindeP, GuptaSS, SinghB, et al.. Amphi-functional Mesoporous Silica Nanoparticles for Dye Separation[J]. J. Mater. Chem. A., 2017, 5: 14 914-14 921

[16]

LuY, ZhangH, ChanJY, et al.. Homochiral MOF-polymer Mixed Matrix Membranes for Efficient Separation of Chiral Molecules[J]. Angew. Chem., 2019, 131(47): 17 084-17 091

[17]

LiuJ, YuanW, LiC, et al.. L-Cysteine-Modified Graphene Oxide-Based Membrane for Chiral Selective Separation[J]. ACS Appl. Mater. Interfaces., 2021, 13(41): 49 215-49 223

[18]

GuL, ChenQ, LiX, et al.. Amino Acid Modified Carbon Nanotubes with Optimal Pore Size for Chiral Separation[J]. Mol. Simul., 2019, 45(13): 1 051-1 057

[19]

GogoiM, GoswamiR, IngolePG, et al.. Selective Permeation of L-tyrosine Through Functionalized Single-walled Carbon Nanotube Thin Film Nanocomposite Membrane[J]. Sep. Purif. Technol., 2020, 233116 061

[20]

WallaceAK, ChanutN, VoigtCA. Silica Nanostructures Produced Using Diatom Peptides with Designed Post-Translational Modifications[J]. Adv. Funct. Mater., 2020, 30302 000 849

[21]

Hammond-PereiraE, ZhangX, WuD, et al.. Precise Tuning of Silica Pore Length and Pore Diameter on Silica-encapsulated Gold Core-shell Nanoparticles and Catalytic Impact[J]. Chem. Eng. J., 2023, 475146 043

[22]

XuW, ShenD, ChenX, et al.. Rotenone Nanoparticles Based on Mesoporous Silica to Improve the Stability, Translocation and Insecticidal Activity of Rotenone[J]. Environ. Sci. Pollut. Res., 2023, 30(48): 106 047-106 058

[23]

GuB, ZengX, GongM, et al.. Target Reprogramming the 3’UTR of Tumor-Suppressor Genes by a SiRNA Composite Nanoparticle for Glioblastoma Therapy[J]. Adv. Funct. Mater., 2024, 342 400 837

[24]

OtalvaroJO, AvenaM, BriganteM. Adsorption of Organic Pollutants by Amine Functionalized Mesoporous Silica in Aqueous Solution. Effects of pH, Ionic Strength and Some COnsequences of APTES Stability[J]. J. Environ. Chem. Eng., 2019, 75103 325

[25]

SeisenbaevaGA, AliLMA, VardanyanA, et al.. Mesoporous Silica Adsorbents Modified with Amino Polycarboxylate Ligands-functional Characteristics, Health and Environmental Effects[J]. J. Hazard. Mater., 2021, 406124 698

[26]

NakaiY, YoshikawaM. Cellulose as a Membrane Material for Optical Resolution[J]. Polymer Journal, 2015, 47: 334-339

[27]

ZhaX, XuG, XiongY, et al.. Modulating the Macroscopic Helicity of Poly(m-phenylenediamine) by Achiral Monomer Copolymerization[J]. Advanced Functional Materials, 2022, 3332 211 956

RIGHTS & PERMISSIONS

Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/