An Efficient Molten Salt Method to Fabricate Light-colored Conductive Whiskers for Fibers

Zengyuan Pang , Pengxiang Gao , Haonan Meng , Zhenyu Cheng , Shen Li , Yanan Zhu

Journal of Wuhan University of Technology Materials Science Edition ›› 2025, Vol. 40 ›› Issue (4) : 905 -913.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2025, Vol. 40 ›› Issue (4) : 905 -913. DOI: 10.1007/s11595-025-3127-3
Advanced Materials
research-article

An Efficient Molten Salt Method to Fabricate Light-colored Conductive Whiskers for Fibers

Author information +
History +
PDF

Abstract

One-dimensional titanium dioxide (TiO2) whiskers with controllable aspect ratios were synthesized by molten salt method adopting anatase TiO2 nanoparticles as precursor, sodium chloride (NaCl) and dibasic sodium phosphate (Na2HPO4) as medium. The particle size of TiO2 nanoparticles and ratio of precursor and medium that can help to generate high aspect ratio TiO2 whiskers were studied and selected. Light-colored antimony-doped tin oxide @ titanium dioxide (ATO@TiO2) conductive whiskers were prepared by coating ATO on TiO2 whiskers through coprecipitation then. Finally, the ATO@TiO2 light-colored conductive whiskers were dispersed in polyacrylonitrile (PAN) to fabricate light-colored conductive fibers. The experimental results show that the ATO@TiO2 whiskers exhibits ideal whiteness and conductivity with 65.5 Wb and 106 Ω·cm, respectively, and the resistivity of conductive fibers was 6.07×106 Ω·cm with 15wt% whisker content.

Keywords

molten salt method / light-colored / conductive fibers / antimony-doped tin oxide @ titanium dioxide (ATO@TiO2)

Cite this article

Download citation ▾
Zengyuan Pang, Pengxiang Gao, Haonan Meng, Zhenyu Cheng, Shen Li, Yanan Zhu. An Efficient Molten Salt Method to Fabricate Light-colored Conductive Whiskers for Fibers. Journal of Wuhan University of Technology Materials Science Edition, 2025, 40(4): 905-913 DOI:10.1007/s11595-025-3127-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

TangCQ, YangQ, SunXM, et al.. Scalable Production of Stretchable Conductive Fibers for Textile Electronics[J]. Matter, 2023, 6(6): 1 675-1 677

[2]

ZhouJY, ZhaoSS, TangL, et al.. Programmable and Weldable Superelastic EGaIn/TPU Composite Fiber by Wet Spinning for Flexible Electronics[J]. ACS Applied Materials & Interfaces, 2023, 15(49): 57 533-57 544

[3]

GaoXD, ChengLS, TanJ, et al.. Conductive Nanocarbon-Coated Glass Fibers[J]. Journal of Physical Chemistry C, 2020, 124(32): 17 806-17 810

[4]

LiuYX, LiZ, FengYT, et al.. Scale Production of Conductive Cotton Yarns by Sizing Process and Its Conductive Mechanism[J]. SN Applied Sciences, 2021, 36611

[5]

WeiLQ, WangSS, ShanMQ, et al.. Conductive Fibers for Biomedical Applications[J]. Bioactive Materials, 2023, 22: 343-364

[6]

YangZH, ZhaiZR, SongZM, et al.. Conductive and Elastic 3D Helical Fibers for Use in Washable and Wearable Electronics[J]. Advanced Materials, 2020, 32101 907 495

[7]

KayaDD, OglakciogluN, SariB, et al.. Electromagnetic Shielding and Comfort Properties of Knitted Fabrics Produced by Electrically Conductive Fibers[J]. Fibers and Polymers, 2023, 24(7): 2 451-2 468

[8]

LiXH, ChenS, PengYJ, et al.. Materials, Preparation Strategies, and Wearable Sensor Applications of Conductive Fibers: A Review[J]. Sensors, 2022, 223 028

[9]

LuoZR, KongN, UsmanKAS, et al.. Knitting Elastic Conductive Fibers of MXene/Natural Rubber for Multifunctional Wearable Sensors[J]. Polymers, 2024, 16131 824

[10]

LiHX, ZhangWX, DingQ, et al.. Facile Strategy for Fabrication of Flexible, Breathable, and Washable Piezoelectric Sensors via Welding of Nanofibers with Multiwalled Carbon Nanotubes (MWCNTs)[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 38 023-38 030

[11]

ZhengX, WangP, ZhangX, et al.. Breathable, Durable and Bark-shaped MXene/Textiles for High-performance Wearable Pressure Sensors, EMI Shielding and Heat Physiotherapy [J]. Composites Part A: Applied Science and Manufacturing, 2022, 152106 700

[12]

ZhangXH, LuWB, ZhouGH, et al.. Understanding the Mechanical and Conductive Properties of Carbon Nanotube Fibers for Smart Electronics [J]. Advanced Materials, 2020, 3251 902 028

[13]

GaoCX, HeSS, QiuLB, et al.. Continuous Dry-wet Spinning of White, Stretchable, and Conductive Fibers of Poly (3-hydroxybutyrate-co-4-hydroxybutyrate) and ATO@ TiO2 Nanoparticles for Wearable E-textiles [J]. Journal of Materials Chemistry C, 2020, 8(25): 8 362-8 367

[14]

KobayashiT, WoodBA, TakemuraA, et al.. Antistatic Performance and Morphological Observation of Ternary Blends of Poly (Ethylene Terephthalate), Poly (Ether Esteramide), and Na-neutralized Poly (Ethylene-co-methacrylic Acid) Copolymers [J]. Journal of Electrostatics, 2006, 64(6): 377-385

[15]

ChenXL, LiCZ, ShaoW, et al.. The Anti-static Poly (Ethylene Terephthalate) Nanocomposite Fiber by in Situ Polymerization: the Thermo-Mechanical and Electrical Properties [J]. Journal of Applied Polymer Science, 2007, 105(3): 1 490-1 495

[16]

LiuHL, GongQH, YueYH, et al.. Sub-1 nm Nanowire Based Superlattice Showing High Strength and Low Modulus [J]. Journal of the American Chemical Society, 2017, 139(25): 8 579-8 585

[17]

YinZG, ZhengQD. Controlled Synthesis and Energy Applications of One-Dimensional Conducting Polymer Nanostructures: An Overview [J]. Advanced Energy Materials, 2012, 2(2): 179-218

[18]

HuJT, OdomTW, LieberCM. Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes [J]. Accounts of Chemical Research, 1999, 32(5): 435-445

[19]

LiuQ, ZhangL, ChenJF, et al.. Synthesis of TiO2@ATO Core-Shell Nanofibers Using Coaxial Electrospinning [J]. Materials Letters, 2014, 137: 339-342

[20]

HeM, FengX, LuXH, et al.. A Controllable Approach for the Synthesis of Titanate Derivatives of Potassium Tetratitanate Fiber [J]. Journal of Materials Science, 2004, 39: 3 745-3 750

[21]

SeoDS, KimH, LeeJ-K. Hydrothermal Synthesis of Na2Ti6O13 and TiO2 Whiskers [J]. Journal of Crystal Growth, 2005, 275(1–2): e2371-e6

[22]

NgoHM, PawarAU, TangJ, et al.. Synthesis of Uniform Size Rutile TiO2 Microrods by Simple Molten-Salt Method and its Photoluminescence Activity [J]. Nanomaterials, 2022, 122 626

[23]

XuZA, WangJK, ZhuYN, et al.. Preparation and Properties of Light-colored Antistatic ATZO@TiO2/PAN Fiber[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2023, 38(4): 766-770

[24]

PolVG, LangzamY, ZabanA. Application of Microwave Superheating for the Synthesis of TiO2 Rods[J]. Langmuir, 2007, 23(22): 11 211-11 216

[25]

Rodríguez-reyesM, Dorantes-rosalesHJ. A Simple Route to Obtain TiO2 Nanowires by the Sol-Gel Method[J]. Journal of Sol-Gel Science and Technology, 2011, 59: 658-661

[26]

RoyB, AhrenkielSP, FuiererPA. Controlling the Size and Morphology of TiO2 Powder by Molten and Solid Salt Synthesis[J]. Journal of the American Ceramic Society, 2008, 91(8): 2 455-2 463

[27]

TsengLT, LuoX, TanTT, et al.. Doping Concentration Dependence of Microstructure and Magnetic Behaviours in Co-doped TiO2 Nanorods[J]. Nanoscale Research Letters, 2014, 9673

[28]

Átoby KelseyE. Atomistic Simulation of the Surface Structure of the TiO2 Polymorphs Rutile and Anatase[J]. Journal of Materials Chemistry, 1997, 7(3): 563-568

[29]

GaoQ, WangMX, GaoCX, et al.. Light-Colored Conductive Fabric Coatings using Uniform ATO@TiO2 Whiskers[J]. Journal of Materials Science, 2021, 56: 351-363

[30]

ShannonRD, PaskJ A. Topotaxy in the Anatase-rutile Transformation[J]. American Mineralogist: Journal of Earth and Planetary Materials, 1964, 49(11–12): 1 707-1 717

[31]

ShannonRD, PaskJA. Kinetics of the Anatase-Rutile Transformation[J]. Journal of the American Ceramic Society, 1965, 48(8): 391-398

RIGHTS & PERMISSIONS

Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/