Fluorescent Double Network Hydrogels with Ionic Responsiveness and High Mechanical Properties for Visual Detection

Wan Zheng , Lerong Liu , Hanlin Lü , Yuhang Wang , Feihu Li , Yixuan Zhang , Yanjun Chen , Yifeng Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (2) : 487 -496.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (2) : 487 -496. DOI: 10.1007/s11595-024-2904-8
Organic Materials

Fluorescent Double Network Hydrogels with Ionic Responsiveness and High Mechanical Properties for Visual Detection

Author information +
History +
PDF

Abstract

We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection. The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network, while the ionic cross-linked hydrogel of terbium ions and sodium alginate serves as the second network. The double-network structure, the introduction of nanoparticles and the reversible ionic cross-linked interactions confer high mechanical properties to the hydrogel. Terbium ions are not only used as the ionic cross-linked points, but also used as green emitters to endow hydrogels with fluorescent properties. On the basis of the “antenna effect” of terbium ions and the ion exchange interaction, the fluorescence of the hydrogels can make selective responses to various ions (such as organic acid radical ions, transition metal ions) in aqueous solutions, which enables a convenient strategy for visual detection toward ions. Consequently, the fluorescent double network hydrogel fabricated in this study is promising for use in the field of visual sensor detection.

Keywords

visual detection / ionic responsiveness / fluorescent hydrogels / double network hydrogels / mechanical property

Cite this article

Download citation ▾
Wan Zheng, Lerong Liu, Hanlin Lü, Yuhang Wang, Feihu Li, Yixuan Zhang, Yanjun Chen, Yifeng Wang. Fluorescent Double Network Hydrogels with Ionic Responsiveness and High Mechanical Properties for Visual Detection. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(2): 487-496 DOI:10.1007/s11595-024-2904-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhao Y, Shi C, Yang X, et al. pH- and Temperature-Sensitive Hydrogel Nanoparticles with Dual Photoluminescence for Bioprobes[J]. ACS Nano, 2016, 10(6): 5 856-5 863.

[2]

Zhang SW, Han DD, Ding ZX, et al. Fabrication and Characterization of One Interpenetrating Network Hydrogel Based on Sodium Alginate and Polyvinyl Alcohol[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2019, 34(3): 744-751.

[3]

Zhang YS, Khademhosseini A. Advances in Engineering Hydrogels[J]. Science, 2017, 356(6337): eaaf3667

[4]

Jiang C, Wen BY, Fan BM, et al. A Tremella-like Mesoporous Calcium Silicate Loaded by TiO2 with Robust Adsorption and Photocatalytic Degradation Capabilities[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2022, 37(2): 184-193.

[5]

HaqAsif A, Karnakar RR, Sreeharsha N, et al. pH and Salt Responsive Hydrogel Based on Guar Gum as A Renewable Material for Delivery of Curcumin: A Natural Anti-Cancer Drug[J]. J. Polym. Environ.., 2021, 29(6): 1 978-1 989.

[6]

Chen JJ, Li F, Li ZZ, et al. Encapsulation of Carotenoids in Emulsion-Based Delivery Systems: Enhancement of Beta-Carotene Water-Dispersibility and Chemical Stability[J]. Food Hydrocoll., 2017, 69: 49-55.

[7]

Lee EM, Gwon SY, Hwang IJ, et al. Ionic Comonomer Effect of Poly (N-Isopropylacrylamide) Copolymer Containing D-π-A Type Pyran-Based Fluorescent Dye[J]. Spectrochim. Acta A, 2012, 92: 33-36.

[8]

Zhang YY, Wu M, Chen J, et al. Tough, High Stretched, Self-healing C-dots/Hydrophobically Associated Composited Hydrogels and Their Use for a Fluorescence Sensing Platform[J]. Chemistryselect, 2018, 3(21): 5 756-5 765.

[9]

Zhang ZJ, Wang J, Nie X, et al. Near Infrared Laser-Induced Targeted Cancer Therapy Using Thermoresponsive Polymer Encapsulated Gold Nanorods[J]. J. Am. Chem. Soc., 2014, 136(20): 7 317-7 326.

[10]

Cheng C, Gao Y, Song W H, et al. Halloysite Nanotube-Based H2O2-Responsive Drug Delivery System with A Turn on Effect on Fluorescence for Real-Time Monitoring[J]. Chem. Eng. J., 2020, 380: 122 474.

[11]

Zhang XY, Zheng Y, Liu CH, et al. Facile and Large Scale in situ Synthesis of the Thermal Responsive Fluorescent SiNPs/PNIPAM Hydrogels[J]. RSC Adv., 2016, 6(60): 55 666-55 670.

[12]

Xiang G, Lippens E, Hafeez S, et al. Oxidized Alginate Beads for Tunable Release of Osteogenically Potent Mesenchymal Stromal Cells[J]. Mat. Sci. Eng. C-Mater., 2019, 104: 109 911.

[13]

Weng GS, Thanneeru S, He J. Dynamic Coordination of Eu-Iminodiacetate to Control Fluorochromic Response of Polymer Hydrogels to Multistimuli[J]. Adv. Mater., 2018, 30(11): 1 706

[14]

Li JF, Li W Z, Xia DD, et al. Dynamic Coordination of Natural Amino Acids-Lanthanides to Control Reversible Luminescent Switching of Hybrid Hydrogels and Anti-Counterfeiting[J]. Dyes Pigments, 2019, 166: 375-380.

[15]

Dong JX, Song XF, Shi Y, et al. A Potential Luminescent Probe: Maillard Reaction Product from Glutathione and Ascorbic Acid for Rapid and Label-Free Dual Detection of Hg2+ and Biothiols[J]. Biosens. Bioelectron., 2016, 81: 473-479.

[16]

She MY, Wu SP, Wang ZH, et al. Exploration of Congeneric Hg(II)-Mediated Chemosensors Driven by S-Hg Affinity, and Their Application in Living System[J]. Sensor. Actuat. B-Chem., 2017, 247: 129-138.

[17]

Liu Q, Microchem J. Determination of Mercury and Methylmercury in Seafood by Ionchromatography Using Photo-Induced Chemical Vapor Generation Atomic Photoluminescence Spectrometric Detection[J]. Microchem. J., 2010, 95(2): 255-258.

[18]

Zhang S X, Yin W D, Yang Z M, et al. Functional Copolymers Married with Lanthanide(III) Ions: A Win-Win Pathway to Fabricate Rare Earth Fluorescent Materials with Multiple Applications[J]. ACS Appl. Mater. Interfaces, 2021, 13(4): 5 539-5 550.

[19]

Zhao D, Yang J, Tian X L, et al. Self-Healing Metallo-Supramolecular Polymers Showing Luminescence off/on Switching Based on Lanthanide Ions and Terpyridine Moieties[J]. Chem. Eng. J., 2022, 434: 134 806.

[20]

Zhu QD, Zhang LH, Van Vliet K, et al. White Light-Emitting Multistimuli-Responsive Hydrogels with Lanthanides and Carbon Dots[J]. ACS Appl. Mater. Interfaces, 2018, 10(12): 10 409-10 418.

[21]

Yu KL, Wang Q, Xiang WQ, et al. A Amino-Functionalized Single-Lanthanide Metal-Organic Framework as a Ratiometric Fluorescent Sensor for Quantitative Visual Detection of Fluoride Ions[J]. Inorg. Chem., 2022, 61(34): 13 627-13 636.

[22]

Chen JW, Yang ZK, Shi D J, et al. High Strength and Toughness of Double Physically Cross-Linked Hydrogels Composed of Polyvinyl Alcohol and Calcium Alginate[J]. J. Appl. Polym. Sci., 2021, 138(10): e49987

[23]

Liu XY, He X, Yang B, et al. Dual Physically Cross-Linked Hydrogels Incorporating Hydrophobic Interactions with Promising Repairability and Ultrahigh Elongation[J]. Adv. Funct. Mater., 2020, 31(3): 2 008

[24]

Gao YJ, Yu LT, Yeo JC, et al. Flexible Hybrid Sensors for Health Monitoring: Materials and Mechanisms to Render Wearability[J]. Adv. Mater., 2020, 32(15): 1 902

[25]

Hu MF, Gao Y, Jiang YJ, et al. High-Performance Strain Sensors Based on Bilayer Carbon Black/PDMS Hybrids[J]. Adv. Compos. Hybrid Ma., 2021, 4(3): 514-520.

[26]

Yang BW, Yuan W. Highly Stretchable and Transparent Double-Network Hydrogel Ionic Conductors as Flexible Thermal-Mechanical Dual Sensors and Electroluminescent Devices[J]. ACS Appl. Mater. Interfaces, 2019, 11(18): 16 765-16 775.

[27]

Cui W, Zhang ZJ, Li H, et al. Robust Dual Physically Cross-Linked Hydrogels with Unique Self-Reinforcing Behavior and Improved Dye Adsorption Capacity[J]. RSC Adv., 2015, 5(65): 52 966-52 977.

[28]

Gaharwar AK, Rivera CP, Wu CJ, et al. Transparent, Elastomeric and Tough Hydrogels from Poly (Ethylene Glycol) and Silicate Nanoparticles[J]. Acta Biomater., 2011, 7(12): 4 139-4 148.

[29]

Felbeck T, Mundinger S, Lezhnina MM, et al. Multifold Fluorescence Enhancement in Nanoscopic Fluorophore-Clay Hybrids in Transparent Aqueous Media[J]. Chem. Eur. J., 2015, 21: 7 582-7 587.

[30]

Li HR, Li M, Wang YL, et al. Luminescent Hybrid Materials Based on Laponite Clay[J]. Chem. Eur. J., 2014, 20(33): 10 392-10 396.

[31]

Liu XY, Niu XF, Fu ZN, et al. A Facile Approach to Obtain Highly Tough and Stretchable LAPONITE®-Based Nanocomposite Hydrogels[J]. Soft Matter, 2022, 16(36): 8 394-8 399.

[32]

Szabo L, Gerber-Lemaire S, Wandrey C. Strategies to Functionalize the Anionic Biopolymer Na-Alginate without Restricting Its Polyelectrolyte Properties[J]. Polym., 2020, 12(4): 919

[33]

Li JF, Li WZ, Xia DD, et al. Dynamic Coordination of Natural Amino Acids-Lanthanides to Control Reversible Luminescent Switching of Hybrid Hydrogels and Anti-Counterfeiting[J]. Dyes Pigments, 2019, 166: 375-380.

[34]

Martin-Ramos P, Lavin V, Silva MR, et al. Novel Erbium(iii) Complexes with 2,6-Dimethyl-3,5-Heptanedione and Different N,N-donor Ligands for Ormosil and PMMA Matrices Doping[J]. J. Mater. Chem. C, 2013, 1(36): 5 701-5 710.

[35]

Cao X, Liu HZ, Yang XH, et al. Halloysite Nanotubes@Polydopamine Reinforced Polyacrylamide-Gelatin Hydrogels with NIR Light Triggered Shape Memory and Self-Healing Capability[J]. Compos. Sci. Technol., 2020, 191: 108 071.

[36]

Tan Y, Xu SM, Wu RL, et al. A Gradient Laponite-Crosslinked Nanocomposite Hydrogel with Anisotropic Stress and Thermo-Response[J]. Appl. Clay Sci., 2017, 148: 77-82.

[37]

Zhao LZ, Zhou CH, Wang J, et al. Recent Advances in Clay Mineral-Containing Nanocomposite Hydrogels[J]. Soft Matter, 2015, 11(48): 9 229-9 246.

[38]

Buenzli Jean-Claude G. On the Design of Highly Luminescent Lanthanide Complexes[J]. Coordin. Chem. Rev., 2015, 293: 19-47.

[39]

Xu YS, Zhang XX, Zhang WJ, et al. Fluorescent Detector for NH3 Based on Responsive Europium(III)-Salicylic Acid Complex Hydrogels[J]. J. Photoch. Photobio. A, 2021, 404: 112 901.

[40]

Roma-Luciow R, Sarraf L, Morcellet M. Complexes of Poly(Acrylic Acid) with Some Divalent, Trivalent and Tetravalent Metal Ions[J]. Eur. Polym. J., 2001, 37(9): 1 741-1 745.

[41]

Li L, Dong XG, Liu ZF, et al. Visual and Ultrasensitive Detection of Mercury Ions Based on Urease Catalysis and Responsive Photonic Crystals[J]. Dyes Pigments, 2021, 195: 109 676.

AI Summary AI Mindmap
PDF

189

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/