Simulation of Dynamic Recrystallization in 7075 Aluminum Alloy Using Cellular Automaton

Xiaodong Zhao , Dongxing Shi , Yajie Li , Fengming Qin , Zhibing Chu , Xiaorong Yang

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (2) : 425 -435.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (2) : 425 -435. DOI: 10.1007/s11595-024-2898-2
Metallic Materials

Simulation of Dynamic Recrystallization in 7075 Aluminum Alloy Using Cellular Automaton

Author information +
History +
PDF

Abstract

The evolution of microstructure during hot deformation is key to achieving good mechanical properties in aluminum alloys. We have developed a cellular automaton (CA) based model to simulate the microstructural evolution in 7075 aluminum alloy during hot deformation. Isothermal compression tests were conducted to obtain material parameters for 7075 aluminum alloy, leading to the establishment of models for dislocation density, nucleation of recrystallized grains, and grain growth. Integrating these aspects with grain topological deformation, our CA model effectively predicts flow stress, dynamic recrystallization (DRX) volume fraction, and average grain size under diverse deformation conditions. A systematic comparison was made between electron back scattered diffraction (EBSD) maps and CA model simulated under different deformation temperatures (573 to 723 K), strain rates (0.001 to 1 s−1), and strain amounts (30% to 70%). These analyses indicate that large strain, high temperature, and low strain rate facilitate dynamic recrystallization and grain refinement. The results from the CA model show good accuracy and predictive capability, with experimental error within 10%.

Keywords

cellular automaton / dynamic recrystallization / 7075 aluminum alloy / hot compression

Cite this article

Download citation ▾
Xiaodong Zhao, Dongxing Shi, Yajie Li, Fengming Qin, Zhibing Chu, Xiaorong Yang. Simulation of Dynamic Recrystallization in 7075 Aluminum Alloy Using Cellular Automaton. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(2): 425-435 DOI:10.1007/s11595-024-2898-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Starke E A Jr, Staley JT. Application of Modern Aluminum Alloys to Aircraft[J]. Progress in Aerospace Sciences, 1996, 32(2–3): 131-172.

[2]

Yoshio Y. Extra Super Duralumin and Successive Aluminum Alloys for Aircraft[J]. J. Jpn. Inst. Light Met., 2015, 39: 379.

[3]

Miller W, Zhuang L, Bottema J, et al. Recent Development in Aluminium Alloys for the Automotive Industry[J]. Materials Science and Engineering: A, 2000, 280(1): 37-49.

[4]

Yang X, Zhao X, Chu Z, et al. Effect of Solutionizing and Aging on Microstructure and Mechanical Properties of Warm-rolled 7075 Alloy[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2023, 38(2): 408-415.

[5]

Yang S, Li Z, Zhou Y, et al. Edge-crack Free and High Mechanical Properties of AA7075 Sheets by Using Cryorolling and Subsequent Aging[J]. Journal of Alloys and Compounds, 2023, 931: 167 556.

[6]

Sun Y, Wang Y, Su Y, et al. Microstructure and Mechanical Properties of Al-5Cu-4.5 Mg-2.5 Zn Squeeze Cast Alloy[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2022, 37(5): 977-985.

[7]

Sun ZC, Zheng LS, Yang H. Softening Mechanism and Microstructure Evolution of As-extruded 7075 Aluminum Alloy During Hot Deformation[J]. Materials Characterization, 2014, 90: 71-80.

[8]

Li DF, Zhang DZ, Liu SD, et al. Dynamic Recrystallization Behavior of 7085 Aluminum Alloy during Hot Deformation[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(6): 1 491-1 497.

[9]

Chen L Q. Phase-field Models for Microstructure Evolution[J]. Annual Review of Materials Research, 2002, 32(1): 113-140.

[10]

Tourret D, Liu H, Llorca J. Phase-field Modeling of Microstructure Evolution: Recent Applications, Perspectives and Challenges[J]. Progress in Materials Science, 2022, 123: 100 810.

[11]

Peczak P. A Monte Carlo Study of Influence of Deformation Temperature on Dynamic Recrystallization[J]. Acta Metallurgica et Materialia, 1995, 43(3): 1 279-1 291.

[12]

Noii N, Khodadadian A, Aldakheel F. Probabilistic Failure Mechanisms via Monte Carlo Simulations of Complex Microstructures[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 399: 115 358.

[13]

Zhang J, Li Z, Wen K, et al. Simulation of Dynamic Recrystallization for an Al-Zn-Mg-Cu Alloy Using Cellular Automaton[J]. Progress in Natural Science: Materials International, 2019, 29(4): 477-484.

[14]

Subramanian R S, Shree R S, Amos P K. Cellular-Automata Based Simulation of Dynamic Recrystallization and Statistical Analysis of Resulting Grain Growth. Asian Symposium on Cellular Automata Technology, 2022 Singapore: Springer Nature. 153-166.

[15]

Goetz R, Seetharaman V. Modeling Dynamic Recrystallization Using Cellular Automata[J]. Scripta Materialia, 1998, 38(3): 405-413.

[16]

Huang CQ, Jia XD, Zhang ZW. Modeling and Simulation of the Static Recrystallization of 5754 Aluminium Alloy by Cellular Automaton[J]. Metals, 2018, 8(8): 585

[17]

Zhang T, Lu SH, Wu YX, et al. Optimization of Deformation Parameters of Dynamic Recrystallization for 7055 Aluminum Alloy by Cellular Automaton[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(6): 1 327-1 337.

[18]

Liu L, Wu Y, Ahmad AS. A Novel Simulation of Continuous Dynamic Recrystallization Process for 2219 Aluminium Alloy Using Cellular Automata Technique[J]. Materials Science and Engineering: A, 2021, 815: 141 256.

[19]

Mirdar M, Serajzadeh S. Simulation of Microstructural Changes after Hot Deformation of Aluminum-magnesium Alloy Using Cellular Automata[J]. Multiscale and Multidisciplinary Modeling, Experiments and Design, 2023, 1–14

[20]

Sellars C, Tegart WM. Hot Workability[J]. International Metallurgical Reviews, 1972, 17(1): 1-24.

[21]

Mecking H, Kocks U. Kinetics of Flow and Strain-hardening[J]. Acta Metallurgica, 1981, 29(11): 1 865-1 875.

[22]

Ding R, Guo Z. Coupled Quantitative Simulation of Microstructural Evolution and Plastic Flow During Dynamic Recrystallization[J]. Acta Materialia, 2001, 49(16): 3 163-3 175.

[23]

Wang L, Fang G, Qian L. Modeling of Dynamic Recrystallization of Magnesium Alloy Using Cellular Automata Considering Initial Topology of Grains[J]. Materials Science and Engineering: A, 2018, 711: 268-283.

[24]

Lee HW, Im YT. Numerical Modeling of Dynamic Recrystallization During Nonisothermal Hot Compression by Cellular Automata and Finite Element Analysis[J]. International Journal of Mechanical Sciences, 2010, 52(10): 1 277-1 289.

[25]

Roberts W, Ahlblom B. A Nucleation Criterion for Dynamic Recrystallization During Hot Working[J]. Acta Metallurgica, 1978, 26(5): 801-813.

[26]

Duan XW, Wang M, Che X, et al. Cellular Automata Coupled Finite Element Simulation for Dynamic Recrystallization of Extruded AZ80A Magnesium Alloy[J]. Journal of Materials Science, 2023, 58(3): 1 345-1 367.

AI Summary AI Mindmap
PDF

215

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/