Nickel Sulfide Modified NiCu Nanoalloy with Excellent Oxygen Evolution Reaction Properties Prepared through Electrospinning and Heat Treatment

Tao Li , Shuai Ling , Shujie Zhong , Qiongyue Lou

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (2) : 320 -326.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (2) : 320 -326. DOI: 10.1007/s11595-024-2886-6
Advanced Materials

Nickel Sulfide Modified NiCu Nanoalloy with Excellent Oxygen Evolution Reaction Properties Prepared through Electrospinning and Heat Treatment

Author information +
History +
PDF

Abstract

Ni2+/Cu2+/SO4 2−/polyvinyl alcohol precursor fibers with uniform diameters were prepared through electrospinning. Nickel-based composite nanoalloys containing Ni, Cu, and S were prepared through heat treatment in an Ar atmosphere. The experimental results show that the main components of the prepared nanoalloys are NiCu, Ni3S2, Ni, and C. The nanoalloys exhibit fine grain sizes about 200–500 nm, which can increase with increasing heat treatment temperature. Electrochemical test results show that the nickel sulfide-modified NiCu nanoalloy composites exhibit excellent oxygen evolution reaction properties, and the oxygen evolution reaction properties gradually improve with the increasing heat treatment temperature. The sample prepared at 1 000 °C for 40 min show a low overpotential of 423 mV and a small Tafel slope of 134 mV·dec−1 at a current density of 10 mA·cm−2.

Keywords

NiCu / nanoalloy / Ni3S2 / structure transformation / oxygen evolution reaction

Cite this article

Download citation ▾
Tao Li, Shuai Ling, Shujie Zhong, Qiongyue Lou. Nickel Sulfide Modified NiCu Nanoalloy with Excellent Oxygen Evolution Reaction Properties Prepared through Electrospinning and Heat Treatment. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(2): 320-326 DOI:10.1007/s11595-024-2886-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chu S, Majumdar A. Opportunities and Challenges for a Sustainable Energy Future[J]. Nature, 2012, 488(7411): 294-303.

[2]

Larcher D, Tarascon JM. Towards Greener and More Sustainable Batteries for Electrical Energy Storage[J]. Nat. Chem., 2015, 7(1): 19-29.

[3]

Matsumoto Y, Sato E. Electrocatalytic Properties of Transition Metal Oxides for Oxygen Evolution Reaction[J]. Mater. Chem. Phys., 1986, 14(5): 397-426.

[4]

Yang C, Rousse G, Louise Svane K, et al. Cation Insertion to Break the Activity/Stability Relationship for Highly Active Oxygen Evolution Reaction Catalyst[J]. Nat. Commun., 2020, 11(1): 1 378

[5]

Wang H, Zhang KHL, Hofmann JP, et al. The Electronic Structure of Transition Metal Oxides for Oxygen Evolution Reaction[J]. J. Mater. Chem. A, 2021, 9(35): 19 465-19 488.

[6]

Wu ZY, Chen FY, Li B, et al. Non-iridium-Based Electrocatalyst for Durable Acidic Oxygen Evolution Reaction in Proton Exchange Membrane Water Electrolysis[J]. Nat. Mater., 2023, 22(1): 100-108.

[7]

Cui C, Gan L, Heggen M, et al. Compositional Segregation in Shaped Pt Alloy Nanoparticles and Their Structural Behaviour During Electrocatalysis[J]. Nat. Mater., 2013, 12(8): 765-771.

[8]

Cheng Q, Hu C, Wang G, et al. Carbon-Defect-Driven Electroless Deposition of Pt Atomic Clusters for Highly Efficient Hydrogen Evolution[J]. J. Am. Chem. Soc., 2020, 142(12): 5 594-5 601.

[9]

Li W, Liu Y, Wu M, et al. Carbon-Quantum-Dots-Loaded Ruthenium Nanoparticles as an Efficient Electrocatalyst for Hydrogen Production in Alkaline Media[J]. Adv. Mater., 2018, 30(31): e1800676

[10]

Barhoum A, El-Maghrabi H H, Iatsunskyi I, et al. Atomic Layer Deposition of Pd Nanoparticles on Self-Supported Carbon-Ni/NiO-Pd Nanofiber Electrodes for Electrochemical Hydrogen and Oxygen Evolution Reactions[J]. J. Colloid Interface Sci., 2020, 569: 286-297.

[11]

Huang WH, Li XM, Yu DY, et al. CoMo-Bimetallic N-Doped Porous Carbon Materials Embedded with Highly Dispersed Pt Nanoparticles as pH-Universal Hydrogen Evolution Reaction Electrocatalysts[J]. Nanoscale, 2020, 12(38): 19 804-19 813.

[12]

Peng J, Dong W, Wang Z, et al. Recent Advances in 2D Transition Metal Compounds for Electrocatalytic Full Water Splitting in Neutral Media[J]. Mater. Today Adv., 2020, 8: 100 081.

[13]

Yu M, Budiyanto E, Tüysüz H. Principles of Water Electrolysis and Recent Progress in Cobalt-, Nickel-, and Iron-Based Oxides for the Oxygen Evolution Reaction[J]. Angew. Chem. Int. Ed., 2022, 61(1): e202103824

[14]

Zhang JW, Zhang H, Ren TZ, et al. FeNi Doped Porous Carbon as an Efficient Catalyst for Oxygen Evolution Reaction[J]. Front. Chem. Sci. Eng., 2021, 15(2): 279-287.

[15]

Gautam RP, Pan H, Chalyavi F, et al. Nanostructured Ni-Cu Electrocatalysts for the Oxygen Evolution Reaction[J]. Catal. Sci. Technol., 2020, 10(15): 4 960-4 967.

[16]

Wang X, Yang M, Feng W, et al. Significantly Enhanced Oxygen Evolution Reaction Performance by Tuning Surface States of Co through Cu Modification in Alloy Structure[J]. J. Electroanal. Chem., 2021, 903: 115 823.

[17]

Chen ZJ, Cao GX, Gan LY, et al. Highly Dispersed Platinum on Honeycomb-Like NiO@Ni Film as a Synergistic Electrocatalyst for the Hydrogen Evolution Reaction[J]. ACS Catal., 2018, 8(9): 8 866-8 872.

[18]

Sun J, Zhou H, Song P, et al. Cuprous Sulfide Derived CuO Nanowires as Effective Electrocatalyst for Oxygen Evolution[J]. Appl. Surf. Sci., 2021, 547: 149 235.

[19]

Lin Y, Yang G, Fu Y, et al. CoO/MnO Heterostructure on Three-Dimensional Nickel Foam as Efficient Electrocatalyst for Oxygen Evolution Reaction[J]. J. Phys. Chem. Solids, 2022, 160: 110 373.

[20]

Danilovic N, Subbaraman R, Strmcnik D, et al. Enhancing the Alkaline Hydrogen Evolution Reaction Activity Through the Bifunctionality of Ni(OH)2/Metal Catalysts[J]. Angew. Chem., 2012, 51(50): 12 495-12498.

[21]

Hu J, Liang YQ, Wu SL, et al. Hierarchical Nickle-Iron Layered Double Hydroxide Composite Electrocatalyst for Efficient Oxygen Evolution Reaction[J]. Mater. Today Nano, 2022, 17: 100 150.

[22]

Jin J, Ge J, Zhao X, et al. An Amorphous NiCuFeP@ Cu3P Nanoarray for an Efficient Hydrogen Evolution[J]. Inorg. Chem. Front., 2022, 9(7): 1 446-1 455.

[23]

Wang D, Xie Y, Wu Z. Amorphous Phosphorus Doped MoS2 Catalyst for Efficient Hydrogen Evolution[J]. Nanotechnology, 2019, 30(20): 205 401

[24]

Wang J, Zhang M, Yang G, et al. Heterogeneous Bimetallic MoNiPx/NiSy as a Highly Efficient Electrocatalyst for Robust Overall Water Splitting[J]. Adv. Funct. Mater., 2021, 31(33): 2 101 532

[25]

Guo Y, Chang X, Fu K, et al. Amorphous Ni/C Nanocomposites from Tandem Plasma Reaction for Hydrogen Evolution[J]. Int. J. Hydrog. Energ., 2019, 44(33): 18 115-18 122.

[26]

Yang D, Cao L, Feng L, et al. Controlled Synthesis of V-Doped Heterogeneous M3S2/MS Nanorod Arrays as Efficient Hydrogen Evolution Electrocatalysts[J]. Langmuir, 2021, 37(1): 357-365.

[27]

Fu Q, Wang X, Han J, et al. Phase-Junction Electrocatalysts Towards Enhanced Hydrogen Evolution Reaction in Alkaline Media[J]. Angew. Chem. Int. Ed., 2021, 60(1): 259-267.

[28]

Rani BJ, Pradeepa SS, Hasan ZM, et al. Supercapacitor and OER Activity of Transition Metal (Mo, Co, Cu) Sulphides[J]. J. Phys. Chem. Solids, 2020, 138: 109 240.

[29]

Xiang W, Tian Q, Zhong C, et al. A Solution-Based Method for Synthesizing Pyrite-Type Ferrous Metal Sulfide Microspheres with Efficient OER Activity[J]. Chem. Asian J., 2020, 15(14): 2 231-2 238.

[30]

Chen Q, Fu Y, Jin J, et al. In-Situ Surface Self-Reconstruction in Ternary Transition Metal Dichalcogenide Nanorod Arrays Enables Efficient Electrocatalytic Oxygen Evolution[J]. J. Energy Chem., 2021, 55(4): 10-16.

[31]

Li T, Zhong S, Lou Q, et al. Ni3Fe/Ni4S3/Ni/C Mixed Crystal Composite Nanofibers Prepared by Electrospinning and Heat Treatment Methods for Oxygen Evolution[J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit, 2023, 38(2): 267-273.

[32]

Fakayode OA, Yusuf BA, Zhou C, et al. Simplistic Two-Step Fabrication of Porous Carbon-Based Biomass-Derived Electrocatalyst for Efficient Hydrogen Evolution Reaction[J]. Energ. Convers. Manag., 2021, 227(1): 113 628

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/