Bio-inspired Hydroxyapatite/Gelatin Transparent Nanocomposites

Junjun Tan , Mingchen Wu , Yuzhe Li , Jiamei Peng , Yan Xiong

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (2) : 298 -308.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (2) : 298 -308. DOI: 10.1007/s11595-024-2883-9
Advanced Materials

Bio-inspired Hydroxyapatite/Gelatin Transparent Nanocomposites

Author information +
History +
PDF

Abstract

Hydroxyapatite (HA) nanoparticles impart outstanding mechanical properties to organic-inorganic nanocomposites in bone. Inspired by the composite structure of HA nanoparticles and collagen in bone, a high performance HA/gelatin nanocomposite was first developed. The nanocomposites have much better mechanical properties (elongation at break 29.9%, tensile strength 90.7 MPa, Young’s modulus 5.24 GPa) than pure gelatin films (elongation at break 9.3%, tensile strength 90.8 MPa, Young’s modulus 2.5 GPa). In addition, the composite films keep a high transmittance in visible wavelength range from 0% to 60% of the HA solid content. These differences in properties are attributed to the homogeneous distribution of HA nanoparticles in the gelatin polymer matrix and the strong interaction between the particle surfaces and the gelatin molecules. This protocol should be promising for HA-based nanocomposites with enhanced mechanical properties for biomedical applications.

Keywords

hydroxyapatite / nanocomposites / sodium citrate / gelatin / colloidal stability

Cite this article

Download citation ▾
Junjun Tan, Mingchen Wu, Yuzhe Li, Jiamei Peng, Yan Xiong. Bio-inspired Hydroxyapatite/Gelatin Transparent Nanocomposites. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(2): 298-308 DOI:10.1007/s11595-024-2883-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Weiner S, Wagner HD. The Material Bone: Structure-Mechanical Function Relations[J]. Annual Review of Materials Science, 1998, 28(1): 271-298.

[2]

Qi C, Musetti S, Fu LH, Zhu Y, Huang L. Biomolecule-assisted Green Synthesis of Nanostructured Calcium Phosphates and Their Biomedical Applications[J]. Chem. Soc. Rev., 2019, 48(10): 2 698-2 737.

[3]

Launey ME, Buehler MJ, Ritchie RO. On the Mechanistic Origins of Toughness in Bone[J]. Annual Review of Materials Research, 2010, 40(1): 25-53.

[4]

Habraken W, Habibovic P, Epple M, et al. Calcium Phosphates in Biomedical Applications: Materials for the Future[J]. Materials Today, 2016, 19(2): 69-87.

[5]

Guan QF, Ling ZC, Han ZM, et al. Ultra-Strong. Ultra-Tough, Transparent, and Sustainable Nanocomposite Films for Plastic Substitute[J]. Matter., 2020, 3(4): 1 308-1 317.

[6]

Zhao C, Zhang P, Zhou J, et al. Layered Nanocomposites by Shear-flow-induced Alignment of Nanosheets[J]. Nature, 2020, 580(7802): 210-215.

[7]

Zhao H, Liu S, Wei Y, et al. Multiscale Engineered Artificial Tooth Enamel[J]. Science, 2022, 375(6580): 551-556.

[8]

Venkatesan J, Kim SK. Nano-hydroxyapatite Composite Biomaterials for Bone Tissue Engineering-A Review[J]. J. Biomed. Nanotechnol., 2014, 10(10): 3 124-3 140.

[9]

Huang Z, Wan Y, Peng M, et al. Incorporating Nanoplate-like Hydroxyapatite into Polylactide for Biomimetic Nanocomposites via Direct Melt Intercalation[J]. Composites Science and Technology, 2020, 185: 107 903.

[10]

Yang B, Li M, Wu Y, et al. Preparation and Characterization of Bonelike Hydroxyapatite/poly(methyl methacrylate) Composite Biomaterials[J]. Science and Engineering of Composite Materials, 2012, 0(0): 1-7.

[11]

Šupová M, Martynková GS, Barabaszová K. Effect of Nanofillers Dispersion in Polymer Matrices: A Review[J]. Science of Advanced Materials, 2011, 3(1): 1-25.

[12]

Supova M. Problem of Hydroxyapatite Dispersion in Polymer Matrices: A Review[J]. J. Mater. Sci. Mater Med., 2009, 20(6): 1 201-1 213.

[13]

Haojie D, Liuyun J, Bingli M, et al. Preparation of a Highly Dispersed Nanohydroxyapatite by a New Surface-Modification Strategy Used as a Reinforcing Filler for Poly(lactic-co-glycolide)[J]. Industrial & Engineering Chemistry Research, 2018, 57(50): 17 119-17 128.

[14]

Jin X, Chen X, Cheng Y, et al. Effects of Hydrothermal Temperature and Time on Hydrothermal Synthesis of Colloidal Hydroxyapatite Nanorods in the Presence of Sodium Citrate[J]. J. Colloid Interface Sci., 2015, 450: 151-158.

[15]

Jin X, Zhuang J, Zhang Z, et al. Hydrothermal Synthesis of Hydroxyapatite Nanorods in the Presence of Sodium Citrate and Its Aqueous Colloidal Stability Evaluation in Neutral pH[J]. J. Colloid. Interface Sci., 2015, 443: 125-30.

[16]

Hu YY, Rawal A, Schmidt-Rohr K. Strongly Bound Citrate Stabilizes the Apatite Nanocrystals in Bone[J]. Proc. Natl. Acad. Sci. USA, 2010, 107(52): 22 425-22 429.

[17]

Delgado-Lopez JM, Bertolotti F, Lyngso J, et al. The Synergic Role of Collagen and Citrate in Stabilizing Amorphous Calcium Phosphate Precursors with Platy Morphology[J]. Acta Biomater., 2017, 49: 555-562.

[18]

Wang Z, Xu Z, Zhao W, et al. Isoexergonic Conformations of Surface-Bound Citrate Regulated Bioinspired Apatite Nanocrystal Growth[J]. ACS Appl Mater Interfaces, 2016, 8(41): 28 116-28 123.

[19]

Santos C, Almeida MM, Costa ME. Morphological Evolution of Hydroxyapatite Particles in the Presence of Different Citrate:Calcium Ratios[J]. Crystal Growth & Design, 2015, 15(9): 4 417-4 426.

[20]

Veis A. The Physical Chemistry of Gelatin[J]. Int. Rev. Connect. Tissue Res., 1965, 3: 113-200.

[21]

Bigi A, Panzavolta S, Roveri N. Hydroxyapatite-gelatin Films: A Structural and Mechanical Characterization[J]. Biomaterials, 1998, 19(7–9): 739-744.

[22]

Chang MC, Ko CC, Douglas WH. Preparation of Hydroxyapatite-gelatin Nanocomposite[J]. Biomaterials, 2003, 24(17): 2 853-2 862.

[23]

Teng S, Shi J, Peng B, et al. The Effect of Alginate Addition on the Structure and Morphology of Hydroxyapatite/Gelatin Nanocomposites[J]. Composites Science and Technology, 2006, 66(11–12): 1 532-1 538.

[24]

Wu X, Liu Y, Wang W, et al. Improved Mechanical and Thermal Properties of Gelatin Films Using a Nano Inorganic Filler[J]. Journal of Food Process Engineering, 2017, 40(3): 1-10.

[25]

Zhang R, Hu H, Liu Y, et al. Homogeneously Dispersed Composites of Hydroxyapatite Nanorods and Poly(lactic acid) and Their Mechanical Properties and Crystallization Behavior[J]. Composites Part A: Applied Science and Manufacturing, 2020, 132: 105 841.

[26]

Tan J, Jin X, Chen M. Bio-inspired Synthesis of Aqueous Nanoapatite Liquid Crystals[J]. Sci. Rep., 2019, 9(1): 466

[27]

Tan J, Liu Y, Gong J, et al. Non-aqueous Liquid Crystals of Hydroxyapatite Nanorods[J]. Acta Biomater., 2020, 116: 383-390.

[28]

Chen X, Jin X, Tan J, et al. Large-scale Synthesis of Water-soluble Luminescent Hydroxyapatite Nanorods for Security Printing[J]. J. Colloid. Interface Sci., 2016, 468: 300-306.

[29]

Dou L, Zhang Y, Sun H. Advances in Synthesis and Functional Modification of Nanohydroxyapatite[J]. Journal of Nanomaterials, 2018, 2018: 1-7.

[30]

Tan KM, Tjin SC, Chan C, et al. High Relative Humidity Sensing Using Gelatin-coated Long Period Grating[J]. Proceedings of SPIE, 2005, 5855: 375-378.

[31]

Kuo D, Nishimura T, Kajiyama S, et al. Bioinspired Environmentally Friendly Amorphous CaCO3-Based Transparent Composites Comprising Cellulose Nanofibers[J]. ACS Omega., 2018, 3(10): 12 722-12 729.

AI Summary AI Mindmap
PDF

189

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/