Ultraviolet Photodetector based on Sr2Nb3O10 Perovskite Nanosheets

Binbin Zhang , Mengmeng Jia , Qi Liang , Jinsong Wu , Junyi Zhai , Baowen Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (2) : 282 -287.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (2) : 282 -287. DOI: 10.1007/s11595-024-2881-y
Advanced Materials

Ultraviolet Photodetector based on Sr2Nb3O10 Perovskite Nanosheets

Author information +
History +
PDF

Abstract

Liquid-phase exfoliation was employed to synthesize Sr2Nb3O10 perovskite nanosheets with thicknesses down to 1.76 nm. Transmission electron microscopy (TEM), atomic force microscope (AFM), X-ray photoelectron spectrometer (XPS), and other characterization techniques were used to evaluate the atomic structure and chemical composition of the exfoliated nanosheets. A UV photodetector based on individual Sr2Nb3O10 nanosheets was prepared to demonstrate the application of an ultraviolet (UV) photodetector. The UV photodetector exhibited outstanding photocurrent and responsivity with a responsivity of 3 × 105 A·W−1 at 5 V bias under 280 nm illumination, a photocurrent of 60 nA, and an on/off ratio of 3 × 102.

Keywords

perovskite nanosheets / liquid-phase exfoliation / ultraviolet photodetector

Cite this article

Download citation ▾
Binbin Zhang, Mengmeng Jia, Qi Liang, Jinsong Wu, Junyi Zhai, Baowen Li. Ultraviolet Photodetector based on Sr2Nb3O10 Perovskite Nanosheets. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(2): 282-287 DOI:10.1007/s11595-024-2881-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang W, Hu K, Teng F, et al. High-Performance Silicon-Compatible Large-Area UV-to-Visible Broadband Photodetector Based on Integrated Lattice-Matched Type II Se/n-Si Heterojunctions[J]. Nano Letters, 2018, 18(8): 4 697-4 703.

[2]

Cai S, Xu X, Yang W, et al. Materials and Designs for Wearable Photodetectors[J]. Advanced Materials, 2019, 31(18): 1 808 138

[3]

Kaur D, Kumar M. A Strategic Review on Gallium Oxide Based Deep-Ultraviolet Photodetectors: Recent Progress and Future Prospects[J]. Advanced Optical Materials, 2021, 9(9): 2 002 160

[4]

Zhang Y, Li S, Li Z, et al. High-Performance Two-Dimensional Perovskite Ca2Nb3O10 UV Photodetectors[J]. Nano Letters, 2021, 21(1): 382-388.

[5]

Virot L, Benedikovic D, Szelag B, et al. Integrated Waveguide PIN Photodiodes Exploiting Lateral Si/Ge/Si Heterojunction[J]. Optics Express, 2017, 25(16): 19 487-19 496.

[6]

Tian H, Hu A, Liu Q, et al. Interface-Induced High Responsivity in Hybrid Graphene/GaAs Photodetector[J]. Advanced Optical Materials, 2020, 8(8): 1 901 741

[7]

Rana AK, Kumar M, Ban DK, et al. Enhancement in Performance of Transparent p-NiO/n-ZnO Heterojunction Ultrafast Self-Powered Photodetector via Pyro-Phototronic Effect[J]. Advanced Electronic Materials, 2019, 5(8): 1900438

[8]

Ouyang W, Chen J, Shi Z, et al. Self-powered UV Photodetectors Based on ZnO Nanomaterials[J]. Applied Physics Reviews, 2021, 8(3): 031 315

[9]

Wang S, Wu C, Wu F, et al. Flexible, Transparent, and Self-Powered Deep Ultraviolet Photodetector based on Ag NWs/Amorphous Gallium Oxide Schottky Junction for Wearable Devices[J]. Sensors and Actuators A: Physical, 2021, 330: 112 870.

[10]

Zhou Y, Qiu X, Wan ZA, et al. Halide-exchanged Perovskite Photodetectors for Wearable Visible-blind Ultraviolet Monitoring[J]. Nano Energy, 2022, 100: 107 516.

[11]

Kim T, Jeong S, Kim KH, et al. Engineered Surface Halide Defects by Two-Dimensional Perovskite Passivation for Deformable Intelligent Photodetectors[J]. ACS Appl Mater Interfaces, 2022, 14(22): 26 004-26 013.

[12]

Li Z, Hong E, Zhang X, et al. Perovskite-Type 2D Materials for High-Performance Photodetectors[J]. The Journal Physical Chemistry Letters, 2022, 13(5): 1 215-1 225.

[13]

Pei Y, Chen R, Xu H, et al. Recent Progress About 2D Metal Dichalcogenides: Synthesis and Application in Photodetectors[J]. Nano Research, 2020, 14(6): 1 819-1 839.

[14]

Zhang Y, Liu J, Wang Z, et al. Synthesis, Properties, and Optical Applications of Low-Dimensional Perovskites[J]. Chemical Communications, 2016, 52(94): 13 637-13 655.

[15]

Ida S, Okamoto Y, Matsuka M, et al. Preparation of Tantalum-Based Oxynitride Nanosheets by Exfoliation of a Layered Oxynitride, Cs-Ca2Ta3O10-xNy, and Their Photocatalytic Activity[J]. Journal of the American Chemical Society, 2012, 134(38): 15 773-15 782.

[16]

Li BW, Osada M, Kim YH, et al. Atomic Layer Engineering of High-kappa Ferroelectricity in 2D Perovskites[J]. Journal of the American Chemical Society, 2017, 139(31): 10 868-10 874.

[17]

Hase I, Nishihara Y. Electronic Structure of The Superconducting Layered Perovskite Niobate[J]. Physical Review B, 1998, 58(4): 1 707-1 709.

[18]

Moritomo Y, Asamitsu A, Kuwahara H, et al. Giant Magnetoresistance of Manganese Oxides with a Layered Perovskite Structure[J]. Nature, 1996, 380(6570): 141-144.

[19]

Benedek NA, Rondinelli JM, Djani H, et al. Understanding Ferroelectricity in Layered Perovskites: New Ideas and Insights from Theory and Experiments[J]. Dalton Transactions, 2015, 44(23): 10 543-10 558.

[20]

Xu FF, Ebina Y, Bando Y, et al. Structural Characterization of (TBA, H)Ca2Nb3O10 Nanosheets Formed by Delamination of a Precursor-Layered Perovskite[J]. The Journal of Physical Chemistry B, 2003, 107(36): 9 638-9 645.

[21]

Maeda K, Sahara G, Eguchi M, et al. Hybrids of a Ruthenium(II) Polypyridyl Complex and a Metal Oxide Nanosheet for Dye-Sensitized Hydrogen Evolution with Visible Light: Effects of the Energy Structure on Photocatalytic Activity[J]. ACS Catalysis, 2015, 5(3): 1 700-1 707.

[22]

Maeda K, Eguchi M, Oshima T. Perovskite Oxide Nanosheets with Tunable Band-Edge Potentials and High Photocatalytic Hydrogen-Evolution Activity[J]. Angewandte Chemie-International Edition, 2014, 53(48): 13 164-13 168.

[23]

Lee W-H, Im M, Kweon S-H, et al. Synthesis of Sr2Nb3O10 Nanosheets and Their Application for Growth of Thin Film Using an Electrophoretic Method[J]. Journal of the American Ceramic Society, 2017, 100(3): 1 098-1 107.

[24]

Xu P, Milstein TJ, Mallouk TE. Flat-Band Potentials of Molecularly Thin Metal Oxide Nanosheets[J]. ACS Applied Materials & Interfaces, 2016, 8(18): 11 539-11 547.

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/