Effect of Molecular Weight on Thermoelectric Performance of P3HT Analogues with 2-Propoxyethyl Side Chains

Defu Dong , Wei Wang , Chun Zhan , Chenglong Li , Qisheng Zhou , Shengqiang Xiao

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (2) : 268 -281.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (2) : 268 -281. DOI: 10.1007/s11595-024-2880-z
Advanced Materials

Effect of Molecular Weight on Thermoelectric Performance of P3HT Analogues with 2-Propoxyethyl Side Chains

Author information +
History +
PDF

Abstract

By replacing hexyl chains in poly(3-hexylthiophene) (P3HT) with 2-propoxyethyls, four poly(3-(2-propoxyethyl)thiophene) (P3POET) homopolymers with comparable polydispersity indexes (PDI) and regioregularities were prepared herein in addition with step increment of about 7 kDa on number-average molecular weight (M n) from around 11 to 32 kDa (accordingly denoted as P11k, P18k, P25k, and P32k). When doped in film by FeCl3 at the optimized conditions, the maximum power factor (PF max) increases greatly from 4.3 µW·m−1·K−2 for P11k to 8.8 µW·m−1·K−2 for P18k, and further to 9.7 µW·m−1·K−2 for P25k, followed by a slight decrease to 9.2 µW·m−1·K−2 for P32k. The close Seebeck coefficients (S) at PF max are observed in these doped polymer films due to their consistent frontier orbital energy levels and Fermi levels. The main contribution to this PF max evolution thus comes from the corresponding conductivities (σ). The σ variation of the doped films can be rationally correlated with their microstructure evolution.

Keywords

conjugated polymer / molecular weight / microstructure / thermoelectric performance

Cite this article

Download citation ▾
Defu Dong, Wei Wang, Chun Zhan, Chenglong Li, Qisheng Zhou, Shengqiang Xiao. Effect of Molecular Weight on Thermoelectric Performance of P3HT Analogues with 2-Propoxyethyl Side Chains. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(2): 268-281 DOI:10.1007/s11595-024-2880-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Glaudell AM, Cochran JE, Patel SN, et al. Impact of the Doping Method on Conductivity and Thermopower in Semiconducting Polythiophenes[J]. Adv. Energy Mater., 2015, 5(4): 1 401 072

[2]

Mcculloch I, Heeney M, Chabinyc ML, et al. Semiconducting Thienothiophene Copolymers: Design, Synthesis, Morphology, and Performance in Thin-Film Organic Transistors[J]. Adv. Mater., 2009, 21(10–11): 1 091-1 109.

[3]

Zhao W, Ding J, Zou Y, et al. Chemical Doping of Organic Semiconductors for Thermoelectric Applications[J]. Chem. Soc. Rev., 2020, 49(20): 7 210-7 228.

[4]

Kim GH, Shao L, Zhang K, et al. Engineered Doping of Organic Semiconductors for Enhanced Thermoelectric Efficiency[J]. Nat. Mater., 2013, 12(8): 719-723.

[5]

Deng L, Liu Y, Zhang Y, et al. Organic Thermoelectric Materials: Niche Harvester of Thermal Energy[J]. Adv. Funct. Mater., 2022, 33(3): 2 210 770

[6]

Fan Z, Du D, Yao H, et al. Higher Pedot Molecular Weight Giving Rise to Higher Thermoelectric Property of PEDOT:PSS: A Comparative Study of Clevios P and Clevios PH1000[J]. ACS Appl. Mater. Interfaces, 2017, 9(13): 11 732-11 738.

[7]

Massetti M, Jiao F, Ferguson AJ, et al. Unconventional Thermoelectric Materials for Energy Harvesting and Sensing Applications[J]. Chem. Rev., 2021, 121(20): 12 465-12 547.

[8]

Bahk JH, Fang H, Yazawa K, et al. Flexible Thermoelectric Materials and Device Optimization for Wearable Energy Harvesting[J]. J. Mater. Chem. C, 2015, 3(40): 10 362-10 374.

[9]

Li QY, Yao ZF, Wang JY, et al. Multi-Level Aggregation of Conjugated Small Molecules and Polymers: From Morphology Control to Physical Insights[J]. Rep. Prog. Phys., 2021, 84(7): 076 601

[10]

Park KS, Kwok JJ, Kafle P, et al. When Assembly Meets Processing: Tuning Multiscale Morphology of Printed Conjugated Polymers for Controlled Charge Transport[J]. Chem. Mater., 2021, 33(2): 469-498.

[11]

Jacobs IE, Aasen EW, Oliveira JL, et al. Comparison of Solution-Mixed and Sequentially Processed P3HT:F4TCNQ Films: Effect of Doping-Induced Aggregation on Film Morphology[J]. J. Mater. Chem. C, 2016, 4(16): 3 454-3 466.

[12]

Tang J, Pai YH, Liang Z. Strategic Insights into Semiconducting Polymer Thermoelectrics by Leveraging Molecular Structures and Chemical Doping[J]. ACS Energy Lett., 2022, 7(12): 4 299-4 324.

[13]

Hynynen J, Kiefer D, Muller C. Influence of Crystallinity on the Thermoelectric Power Factor of P3HT Vapour-Doped with F4TCNQ[J]. RSC Adv., 2018, 8(3): 1 593-1 599.

[14]

Nam GH, Sun C, Chung DS, et al. Enhancing Doping Efficiency of Diketopyrrolopyrrole-Copolymers by Introducing Sparse Intramolecular Alkyl Chain Spacing[J]. Macromolecules, 2021, 54(17): 7 870-7 879.

[15]

Wang D, Ding J, Dai X, et al. Triggering ZT to 0.40 by Engineering Orientation in One Polymeric Semiconductor[J]. Adv. Mater., 2023, 35(2): 2 208 215

[16]

Untilova V, Biskup T, Biniek L, et al. Control of Chain Alignment and Crystallization Helps Enhance Charge Conductivities and Thermoelectric Power Factors in Sequentially Doped P3HT:F4TCNQ Films[J]. Macromolecules, 2020, 53(7): 2 441-2 453.

[17]

Russ B, Glaudell A, Urban JJ, et al. Organic Thermoelectric Materials for Energy Harvesting and Temperature Control[J]. Nat. Rev. Mater., 2016, 1(10): 16 050

[18]

Xu S, Shi XL, Dargusch M, et al. Conducting Polymer-Based Flexible Thermoelectric Materials and Devices: From Mechanisms to Applications[J]. Prog. Mater. Sci., 2021, 121(2021): 100 840

[19]

Li S, Han Y, Ye L. Effect of Molecular Weight on Microstructure and Electrical Properties of Conjugated Polymer Films[J]. Sci. Sin. Chim., 2021, 52(4): 523-535.

[20]

Koch FPV, Rivnay J, Foster S, et al. The Impact of Molecular Weight on Microstructure and Charge Transport in Semicrystalline Polymer Semiconductors-Poly(3-Hexylthiophene), a Model Study[J]. Prog. Polym. Sci., 2013, 38(12): 1 978-1 989.

[21]

Shi M, Wang T, Wu Y, et al. The Intrinsic Role of Molecular Mass and Polydispersity Index in High-Performance Non-Fullerene Polymer Solar Cells[J]. Adv. Energy Mater., 2020, 11(1): 2 002 709

[22]

Wadsworth A, Hamid Z, Bidwell M, et al. Progress in Poly (3-Hexylthiophene) Organic Solar Cells and the Influence of Its Molecular Weight on Device Performance[J]. Adv. Energy Mater., 2018, 8(28): 1 801 001

[23]

Wang Z, Gao M, He C, et al. Unraveling the Molar Mass Dependence of Shearing-Induced Aggregation Structure of a High-Mobility Polymer Semiconductor[J]. Adv. Mater., 2022, 34(7): 2 108 255

[24]

Guo X, Zhang Y, Hu Y, et al. Molecular Weight Engineering in High-Performance Ambipolar Emissive Mesopolymers[J]. Angew. Chem. Int. Ed. Engl., 2021, 60(27): 14 902-14 908.

[25]

Qu S, Yao Q, Yu B, et al. Optimizing the Thermoelectric Performance of Poly(3-Hexylthiophene) through Molecular-Weight Engineering[J]. Chem. Asian J., 2018, 13(21): 3 246-3 253.

[26]

Yoon SE, Kim B, Chun SY, et al. Impact of Molecular Weight on Molecular Doping Efficiency of Conjugated Polymers and Resulting Thermoelectric Performances[J]. Adv. Funct. Mater., 2022, 32(32): 2 202 929

[27]

Pingel P, Schwarzl R, Neher D. Effect of Molecular P-Doping on Hole Density and Mobility in Poly(3-Hexylthiophene)[J]. Appl. Phys. Lett., 2012, 100(14): 143 303

[28]

Kang YH, Ko SJ, Lee MH, et al. Highly Efficient and Air Stable Thermoelectric Devices of Poly(3-Hexylthiophene) by Dual Doping of Au Metal Precursors[J]. Nano Energy, 2021, 82(2021): 105 681

[29]

Gregory SA, Menon AK, Ye S, et al. Effect of Heteroatom and Doping on the Thermoelectric Properties of Poly(3-Alkylchalcogenophenes) [J]. Adv. Energy Mater., 2018, 8(34): 1 802 419

[30]

Chen L, Liu W, Yan Y, et al. Fine-Tuning the Solid-State Ordering and Thermoelectric Performance of Regioregular P3HT Analogues by Sequential Oxygen-Substitution of Carbon Atoms Along the Alkyl Side Chains[J]. J. Mater. Chem. C, 2019, 7(8): 2 333-2 344.

[31]

Osaka I, Mccullough RD. Advances in Molecular Design and Synthesis of Regioregular Polythiophenes[J]. Acc. Chem. Res., 2008, 41(9): 1 202-1 214.

[32]

Song CK, Eckstein BJ, Tam TL, et al. Conjugated Polymer Energy Level Shifts in Lithium-Ion Battery Electrolytes J]. ACS Appl. Mater. Interfaces, 2014, 6(21): 19 347-19 354.

[33]

Lee Y, Park J, Son J, et al. Degenerately Doped Semi-Crystalline Polymers for High Performance Thermoelectrics[J]. Adv. Funct. Mater., 2020, 31(9): 2 006 900

[34]

Liu J, Van Der Zee B, Alessandri R, et al. N-Type Organic Thermoelectrics: Demonstration of ZT > 0.3[J]. Nat. Commun., 2020, 11(1): 5 694

[35]

Johnston DE, Yager KG, Hlaing H, et al. Nanostructured Surfaces Frustrate Polymer Semiconductor Molecular Orientation[J]. ACS Nano, 2014, 8(1): 243-249.

[36]

Peng Z, Xian K, Liu J, et al. Unraveling the Stretch-Induced Microstructural Evolution and Morphology-Stretchability Relationships of High-Performance Ternary Organic Photovoltaic Blends[J]. Adv. Mater., 2023, 35(3): 2 207 884

[37]

Pouliot JR, Wakioka M, Ozawa F, et al. Structural Analysis of Poly(3-Hexylthiophene) Prepared Via Direct Heteroarylation Polymerization[J]. Macromol. Chem. Phys., 2016, 217(13): 1 493-1 500.

[38]

Pokrop R, Verilhac JM, Gasior A, et al. Effect of Molecular Weight on Electronic, Electrochemical and Spectroelectrochemical Properties of Poly(3,3″-Dioctyl-2,2′:5′,2″-Terthiophene)[J]. J. Mater. Chem., 2006, 16(30): 3 099-3 106.

[39]

Ma J, Li SH, Jiang YS. A Time-Dependent Dft Study on Band Gaps and Effective Conjugation Lengths of Polyacetylene, Polyphenylene, Polypentafulvene, Polycyclopentadiene, Polypyrrole, Polyfuran, Polysilole, Polyphosphole, and Polythiophene[J]. Macromolecules, 2002, 35(3): 1 109-1 115.

[40]

Liu F, Chen D, Wang C, et al. Molecular Weight Dependence of the Morphology in P3HT:PCBM Solar Cells[J]. ACS Appl. Mater. Interfaces, 2014, 6(22): 19 876-19 887.

[41]

Li H, Plunkett E, Cai Z, et al. Dopant-Dependent Increase in Seebeck Coefficient and Electrical Conductivity in Blended Polymers with Offset Carrier Energies[J]. Adv. Electron. Mater., 2019, 5(11): 1 800 618

[42]

Ko DK, Murray CB. Probing the Fermi Energy Level and the Density of States Distribution in PbTe Nanocrystal (Quantum Dot) Solids by Temperature-Dependent Thermopower Measurements[J]. ACS Nano, 2011, 5(6): 4 810-4 817.

[43]

Yazdani S, Pettes MT. Nanoscale Self-Assembly of Thermoelectric Materials: A Review of Chemistry-Based Approaches[J]. Nanotechnology, 2018, 29(43): 432 001

[44]

Fritzsche H. A General Expression for the Thermoelectric Power[J]. Solid State Commun., 1971, 9(21): 1 813-1 815.

[45]

Kim NY, Lee TS, Lee DY, et al. Enhanced Doping Efficiency and Thermoelectric Performance of Diketopyrrolopyrrole-Based Conjugated Polymers with Extended Thiophene Donors[J]. J. Mater. Chem. C, 2021, 9(1): 340-347.

[46]

Böhm W, Fritz T, Leo K. Charge Transport in Thin Organic Semiconducting Films: Seebeck and Field Effect Studies[J]. Phys. Stat. Sol. A, 1997, 160(1): 81-87.

[47]

Zou Y, Huang D, Meng Q, et al. Correlation between Seebeck Coefficient and Transport Energy Level in Poly(3-Hexylthiophene)[J]. Org. Electron., 2018, 56(2018): 125-128.

[48]

Enengl C, Enengl S, Pluczyk S, et al. Doping-Induced Absorption Bands in P3HT: Polarons and Bipolarons[J]. Chem. Phys. Chem., 2016, 17(23): 3 836-3 844.

[49]

Tripathi A, Lee Y, Jung C, et al. A Heavily Doped D–D′-Type Polymer with Metal-Like Carrier Transport Via Hybrid Doping[J]. J. Mater. Chem. C, 2023, 11(17): 5 646-5 656.

[50]

Patel SN, Glaudell AM, Peterson KA, et al. Morphology Controls the Thermoelectric Power Factor of a Doped Semiconducting Polymer[J]. Sci. Adv., 2017, 3(6): e1700434

[51]

Tang J, Ji J, Chen R, et al. Achieving Efficient P-Type Organic Thermoelectrics by Modulation of Acceptor Unit in Photovoltaic Pi-Conjugated Copolymers[J]. Adv. Sci., 2022, 9(4): 2 103 646

[52]

Wu L, Li H, Chai H, et al. Anion-Dependent Molecular Doping and Charge Transport in Ferric Salt-Doped P3HT for Thermoelectric Application[J]. ACS Appl. Electron. Mater., 2021, 3(3): 1 252-1 259.

[53]

Lee J, Kim J, Nguyen TL, et al. A Planar Cyclopentadithiophene-Benzothiadiazole-Based Copolymer with sp2-Hybridized Bis(Alkylsulfanyl)Methylene Substituents for Organic Thermoelectric Devices[J]. Macromolecules, 2018, 51(9): 3 360-3 368.

[54]

Lee H, Li H, Kim YS, et al. Novel Dithienopyrrole-Based Conjugated Copolymers: Importance of Backbone Planarity in Achieving High Electrical Conductivity and Thermoelectric Performance[J]. Macromol. Rapid Commun., 2022, 43(19): 2 200 277

[55]

Gu K, Snyder CR, Onorato J, et al. Assessing the Huang-Brown Description of Tie Chains for Charge Transport in Conjugated Polymers [J]. ACS Macro Lett., 2018, 7(11): 1 333-1 338.

[56]

Sirringhaus H, Brown PJ, Friend R H, et al. Two-Dimensional Charge Transport in Self-Organized, High-Mobility Conjugated Polymers[J]. Nature, 1999, 401(6754): 685-688.

[57]

Jiang Y, Chen J, Sun Y, et al. Fast Deposition of Aligning Edge-on Polymers for High-Mobility Ambipolar Transistors[J]. Adv. Mater., 2019, 31(2): 1 805 761

[58]

Li B, Li X, Yang F, et al. Enhanced Thermoelectric Performance of a Donor-Acceptor-Based Two-Dimensional Conjugated Polymer with High Crystallinity[J]. ACS Applied Energy Materials, 2021, 4(5): 4 662-4 671.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/